

Table of Contents
Welcome to Computer Science Discoveries 1

Code.org Values and Philosophy 3
Curriculum Values 3
Pedagogical Approach To Our Values 4

CS Discoveries Curriculum Overview 5
Unit 1 - Problem Solving and Computing 5
Unit 2 - Web Development 8
Unit 3 - Interactive Animations and Games 12
Unit 4 - The Design Process 16
Unit 5 - Data and Society 19
Unit 6 - Physical Computing 22

Learning Tools 25

Unplugged and Plugged Activities 27

Teaching and Learning Strategies 28
Student Practices 33
Problem Solving Process 33
The Problem Solving Process for Programming 34
The Problem Solving Process for Design 34
The Problem Solving Process for Data 34

Course Resources 35
Code.org Website 35
Course Overview Pages 36
Unit Overview Pages 37
Lesson Structure and Iconography 40

Assessment and Feedback 43

Planning for the Year 45
Pacing 45
Tech Requirements and Required Materials 45

Appendix A: Professional Learning Handouts 46
Build your Action Plan: Getting to Fall 47
Pacing and Planning: Instructional Units 48

Appendix B: CS Discoveries Getting Started and Implementation Options 49
Getting Started 50
Intended Implementation Options 52

Appendix C: Additional Guides and Resources 53
Guide to Debugging - Student Facing 54
Guide to Debugging - Teacher Facing 55
Guide to Differentiation - Teacher Facing 58
Guide to Resources - Student Facing 60
Guide to Resources - Teacher Facing 61

Welcome to Computer Science Discoveries
CS Discoveries is an introductory computer science course that empowers students to create authentic artifacts and
engage with computer science as a medium for creativity, communication, problem solving, and fun.

Semester 1 - Exploration and Expression
The first semester of CS Discoveries introduces students to computer science as a vehicle for problem solving,
communication, and personal expression. As a whole, this semester focuses on the visible aspects of computing and
computer science, and encourages students to see where computer science exists around them and how they can
engage with it as a tool for exploration and expression.

Semester 2 - Innovation and Impact
Where the first semester centers on the immediately observable and personally applicable elements of computer science,
the second semester asks students to look outward and explore the impact of computer science on society. Students will
see how a thorough user-centered design process produces a better application, how data is used to address problems
that affect large numbers of people, and how physical computing with circuit boards allows computers to collect input and
return output in a variety of ways.

1

CS Discoveries Curriculum Guide

Unit 1:
Problem Solving and
Computing

Students learn the problem-solving process, the input-output-store-process model
of a computer, and how computers help humans solve problems. Students end
the unit by proposing their own app to solve a problem.

Unit 2:
Web Development

Students learn to create websites using HTML and CSS inside Code.org’s Web
Lab environment. Throughout the unit, students consider questions of privacy and
ownership on the internet as they develop their own personal websites.

Unit 3:
Interactive Animations
and Games

Students learn fundamental programming constructs and practices in the
JavaScript programming language while developing animations and games in
Code.org’s Game Lab environment. Students end the unit by designing their own
animations and games.

Unit 4:
The Design Process

Students apply the problem solving process to the problems of others, learning to
empathize with the needs of a user and design solutions to address those needs.
During the second half of the unit, students form teams to prototype an app of
their own design, first on paper and eventually in Code.org’s App Lab
environment.

Unit 5:
Data and Society

Students explore different systems used to represent information in a computer
and the challenges and tradeoffs posed by using them. In the second half of the
unit, students learn how collections of data are used to solve problems and how
computers help to automate the steps of this process.

Unit 6:
Physical Computing

Students use Code.org’s App Lab environment, in conjunction with the Adafruit
Circuit Playground, to explore the relationship between hardware and software.
Throughout the unit, students develop prototypes that mirror existing innovative
computing platforms, before ultimately designing and prototyping one of their own.

Standards and Learning Framework
CS Discoveries was written using both the K-12 Framework for Computer Science and the CSTA standards as guidance.
Lists of connected standards can be found within each lesson where they are addressed. An overview of all of the
standards for the course can be viewed at curriculum.code.org/csd/standards/

In addition to the CSTA standards and K-12 Framework, CS Discoveries was written with a learning framework, which is
written for each unit and outlines the expected student outcomes that are assessed throughout the unit and in that unit’s
major projects and post-project test. These outcomes are organized into concept clusters to help students and teachers
understand the broad goals of each unit.

Tools Across the Course
CS Discoveries introduces students to tools and programming languages that are accessible for beginners while offering
more advanced students opportunities to create sophisticated projects. All of the tools below are integrated directly into
the Code.org website, allowing teachers to have visibility into all student work and progress.

2

CS Discoveries Curriculum Guide

Unit 1
Problem Solving and

Computing
No special learning tools

Unit 2
Web Development

Web Lab — A browser-based tool for creating and publishing HTML and CSS web sites.

Unit 3
Interactive

Animations and
Games

Game Lab — A browser-based JavaScript programming environment designed to create
sprite-based drawings, animations and games. Enables students to switch between
programming in blocks or text.

Unit 4
The Design Process

App Lab — A browser-based JavaScript programming environment for creating interactive
apps. Enables students to switch between programming in blocks or text.

Unit 5
Data and Society

No special learning tools

Unit 6
Physical Computing

Circuit Playground — Adafruit’s low-cost microcontroller featuring multiple integrated sensors
and output devices.
Maker Toolkit — A collection of commands that extends App Lab’s capabilities to allow
students to easily program the Circuit Playground and directly from App Lab.

https://curriculum.code.org/csd/standards/

Code.org Values and Philosophy
Curriculum Values

While Code.org offers a wide range of curricular materials across a wide range of ages, the following values permeate and
drive the creation of every lesson we write.

Computer Science is Foundational for Every Student
We believe that computing is so fundamental to understanding and participating in society that it is valuable for every
student to learn as part of a modern education. We see computer science as a liberal art, a subject that provides students
with a critical lens for interpreting the world around them. Computer science prepares all students to be active and
informed contributors to our increasingly technological society whether they pursue careers in technology or not.
Computer science can be life-changing, not just skill training.

Teachers in Classrooms
We believe students learn best with the help of an empowered teacher. We design our materials for a classroom setting
and provide teachers robust supports that enable them to understand and perform their critical role in supporting student
learning. Because teachers know their students best, we empower them to make choices within the curriculum, even as
we recommend and support a variety of pedagogical approaches. Knowing that many of our teachers are new to
computer science themselves, our resources and strategies specifically target their needs.

Student Engagement and Learning
We believe that students learn best when they are intrinsically motivated. We prioritize learning experiences that are
active, relevant to students’ lives, and provide students authentic choice. We encourage students to be curious, solve
personally relevant problems and to express themselves through creation. Learning is an inherently social activity, so we
interweave lessons with discussions, presentations, peer feedback, and shared reflections. As students proceed through
our pathway, we increasingly shift responsibility to students to formulate their own questions, develop their own solutions,
and critique their own work.

Equity
We believe that acknowledging and shining a light on the historical inequities within the field of computer science is critical
to reaching our goal of bringing computer science to all students. We provide tools and strategies to help teachers
understand and address well-known equity gaps within the field. We recognize that some students and classrooms need
more support than others, and so those with the greatest needs should be prioritized. All students can succeed in
computer science when given the right support and opportunities, regardless of prior knowledge or privilege. We actively
seek to eliminate and discredit stereotypes that plague computer science and lead to attrition of the very students we aim
to reach.

Curriculum as a Service
We believe that curriculum is a service, not just a product. Along with producing high quality materials, we seek to build
and nourish communities of teachers by providing support and channels for communication and feedback. Our products
and materials are not static entities, but a living and breathing body of work that is responsive to feedback and changing
conditions. To ensure ubiquitous access to our curriculum and tools, they are web-based and cross-platform, and will
forever be free to use and openly licensed under a Creative Commons license.

3

CS Discoveries Curriculum Guide

Pedagogical Approach To Our Values

When we design learning experiences, we draw from a variety of teaching and learning strategies all with the goal of
constructing an equitable and engaging learning environment.

Role of the Teacher
We design curriculum with the idea that the instructor will act as the lead learner. As the lead learner, the role of the
teacher shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner’s mantra is: “I
may not know the answer, but I know that together we can figure it out.” A very practical residue of this is that we never
ask a teacher to lecture or offer the first explanation of a CS concept. We want the class activity to do the work of
exposing the concept to students, allowing the teacher to shape meaning from what the students have experienced. We
also expect teachers to act as the curator of materials. Finally, we include an abundance of materials and teaching
strategies in our curricula - too many to use at once - with the expectation that teachers have the professional expertise to
determine how to best conduct an engaging and relevant class for their own students.

Discovery and Inquiry
We take great care to design learning experiences in which students have an active and equal stake in the proceedings.
Students are given opportunities to explore concepts and build their own understandings through a variety of physical
activities and online lessons. These activities form a set of common lived experiences that connect students (and the
teacher) to the course content and to each other. The goal is to develop a common foundation upon which all students in
the class can construct their understanding of computer science concepts, regardless of prior experience in the discipline.

Materials and Tools
Our materials and tools are specifically created for learners and learning experiences. They focus on foundational
concepts that allow them to stand the test of time, and they are designed to support exploration and discovery by those
without computer science knowledge. This allows students to develop an understanding of these concepts through “play”
and experimentation. From our coding environments to our non-coding tools and videos, all our resources have been
engineered to support the lessons in our curriculum, and thus our philosophy about student engagement and learning. In
that vein, our videos can be a great tool for sensemaking about CS concepts and provide a resource for students to return
to when they want to refresh their knowledge. They are packed with information and “star” a diverse cast of presenters
and CS role models.

Creation and Personal Expression
Many of the projects, assignments, and activities in our curriculum ask students to be creative, to express themselves,
and then to share their creations with others. While certain lessons focus on learning and practicing new skills, our goal is
always to enable students to transfer these skills to creations of their own. Everyone seeks to make their mark on society,
including our students, and we want to give them the tools they need to do so. When computer science provides an outlet
for personal expression and creativity, students are intrinsically motivated to deepen the understandings that will allow
them to express their views and carve out their place in the world.

The Classroom Community
Our lessons almost always call for students to interact with other students in the class in some way. Whether learners are
simply conferring with a partner during a warm up discussion, or engaging in a long-term group project, our belief is that a
classroom where students are communicating, solving problems, and creating things is a classroom that not only leads to
active and better learning for students, but also leads to a more inclusive classroom culture in which all students share
ideas and listen to ideas of others. For example, classroom discussions usually follow a Think-Pair-Share pattern; we ask
students to write computer code in pairs; and we strive to include projects for teams in which everyone must play a critical
role.

4

CS Discoveries Curriculum Guide

CS Discoveries Curriculum Overview
The following pages provide an overview of each of the 6 units in the CS Discoveries curriculum. For each unit, there is a
one page description of the unit, timeline, big questions answered throughout the unit, learning goals, major projects, and
tools, and the 1 - 3 pages that follow the overview outline each lesson of the unit.

Unit 1 - Problem Solving and Computing

Overview and Timeline
The Problem Solving and Computing
unit is a highly interactive and
collaborative introduction to the field of
computer science, as framed within the
broader pursuit of solving problems.
Through a series of puzzles, challenges,
and real world scenarios, students are
introduced to a problem solving process
that they will return to repeatedly
throughout the course. Students then learn how computers input, output, store, and process information to help humans solve
problems within the context of apps. The unit concludes with students designing an app that helps solve a problem of their
choosing.

Big Questions

Unit Goals

By the end of the unit, students should be able to identify the defined characteristics of a computer and how it is used to
solve information problems. They should be able to use a structured problem solving process to address problems and
design solutions that use computing technology. The unit also serves to build a collaborative classroom environment
where students view computer science as relevant, fun, and empowering.

Alternate Lessons
Alternate versions of Lessons 1 and 3 are available, and they target the same learning goals. Teachers may choose which
lesson to implement based on the availability of supplies or student interests. Chapter 1 of Unit 1 can be used as a review
for students who have already taken a portion of the Computer Science Discoveries course in a different grade level or
semester. In this case, the teacher can substitute in a different lesson from the one that students have already completed.

Major Projects
● Lesson 8: Project - Propose an App

To conclude their study of the problem solving process and the input/output/store/process model of a computer, students
will propose an app designed to solve a problem of their choosing. To learn more about this project, check out the
description in this unit’s lesson progression.

5

CS Discoveries Curriculum Guide

Chapter 1 - The Problem Solving Process
● What strategies and processes can I

use to become a more effective
problem solver?

Chapter 2 - Computers and Problem Solving
● How do computers help people to solve problems?
● How do people and computers approach problems differently?
● What does a computer need from people in order to solve

problems effectively?

Lesson Progression: Unit 1 - Problem Solving and Computing

6

CS Discoveries Curriculum Guide

Chapter 1
The

Problem
Solving
Process

Lesson 1
Alternate
Lessons
(Select
One)

Lesson 1: Intro to Problem Solving - Aluminum Boats
The class works in groups to design aluminum foil boats that will support as many pennies
as possible. At the end of the lesson, groups reflect on their experiences with the activity
and make connections to the types of problem solving they will be doing for the rest of the
course.

Lesson 1: Exploring Problem Solving - Newspaper Table
The class works in groups to design newspaper tables that will support as many books as
possible. At the end of the lesson, groups reflect on their experiences with the activity and
make connections to the types of problem solving they will be doing for the rest of the
course.

Lesson 1: Exploring Problem Solving - Spaghetti Bridge
The class works in groups to design spaghetti bridges that will support as many books as
possible. At the end of the lesson, groups reflect on their experiences with the activity and
make connections to the types of problem solving they will be doing for the rest of the
course.

Lesson 2: The Problem Solving Process
This lesson introduces the formal problem solving process that the class will use over the course of the
year: Define - Prepare - Try - Reflect. The class relates these steps to the problem from the previous
lesson, then to a problem they are good at solving, then to a problem they want to improve at solving. At
the end of the lesson, the class collects a list of generally useful strategies for each step of the process
to put on posters that will be used throughout the unit and year.

Lesson 3
Alternate
Lessons
(Select
One)

Lesson 3: Exploring Problem Solving
In this lesson, the class applies the problem solving process to three different problems: a
word search, a seating arrangement for a birthday party, and planning a trip. The problems
grow increasingly complex and poorly defined to highlight how the problem solving process
is particularly helpful when tackling these types of problems.

Lesson 3: Exploring Problem Solving - Animal Theme
In this lesson, the class applies the problem solving process to three different problems: a
tangram puzzle, choosing a pet according to criteria, and planning a pet adoption event.
The problems grow increasingly complex and poorly defined to highlight how the problem
solving process is particularly helpful when tackling these types of problems.

Lesson 3: Exploring Problem Solving - Games Theme
In this lesson, the class applies the problem solving process to three different problems: a
maze, a logic puzzle, and planning field day activity. The problems grow increasingly
complex and poorly defined to highlight how the problem solving process is particularly
helpful when tackling these types of problems.

Chapter 2
Computers

and
Problem
Solving

Lesson 4: What is a Computer?
In this lesson, the class develops a preliminary definition of a computer. After brainstorming the possible
definitions for a computer, the class works in groups to sort pictures into “is a computer” or “is not a
computer” categories on poster paper, and explain their motivations for choosing some of the most
difficult categorizations. The teacher then introduces a definition of the computer and allows groups to
revise their posters according to the new definition.

7

CS Discoveries Curriculum Guide

Chapter 2
Computers

and
Problem
Solving

(continued)

Lesson 5: Input and Output
In this lesson, the class considers how computers get and give information to the user through inputs
and outputs. After first considering what information they would need to solve a "thinking problem”, the
class identifies the inputs and outputs to that process. Afterwards, they explore a series of apps and
determine the inputs and outputs for each one.

Lesson 6: Processing
This lesson introduces four types of processing that the class will use throughout the course. Through a
series of apps, the class explores how processing is used to turn input into output. In the end, the class
brainstorms more types of app processing that would be useful.

Lesson 7: Storage
This lesson covers the last part of the chapter's model of computing: storage. The class interacts with
several different apps, determining which information should be stored for later and why. The
input-output-storage-processing model of computing is then presented in full, and the class reflects on
how various apps use each of the components, and how the model impacts whether or not something
should be considered a computer.

Lesson 8: Project - Propose an App
To conclude the study of the problem solving process and the input/output/store/process model of a
computer, the class proposes apps designed to solve real world problems. This project is completed
across multiple days and culminates in a poster presentation where students highlight the features of
their apps. The project is designed to be completed in pairs, though it can be completed individually.

Unit 2 - Web Development

Overview and Timeline

In Web Development, students are
empowered to create and share content on
their own web pages. They begin by thinking
about the role of the web and how it can be
used as a medium for creative expression. As
students develop their pages and begin to see
themselves as programmers, they are
encouraged to think critically about the impact
of sharing information online and how to be
more critical consumers of content. They are
also introduced to problem solving as it relates
to programming while they learn valuable skills
such as debugging, using resources, and
teamwork. At the conclusion of the unit,
students will have created a personal website
they can publish and share.

Big Questions

Unit Goals

By the end of the unit, students should be able to create a digital artifact that uses multiple computer languages to control
the structure and style of their content, and view computer science as a tool for personal expression. They should
understand that different programming languages allow them to solve different problems, and that these solutions can be
generalized across similar problems. Lastly, they should understand their role and responsibilities as both creators and
consumers of digital media.

Major Projects
● Lesson 13: Project - Personal Web Page
● Lesson 20: Project - Website for a Purpose

Throughout the unit, students use their developing skills to create a multi-page website, and have several opportunities to
share out and engage in peer review at the end of each chapter. These projects emphasize many of the core practices of
this course as students will need to tap into their creativity, problem solving skills, and persistence to complete their
websites. To learn more about these projects, check out the descriptions in this unit’s lesson progression.

Tools
This unit uses Web Lab . For more detailed information, see the Learning Tools section of this curriculum guide

8

CS Discoveries Curriculum Guide

Chapter 1 - Creating Web Pages
● Why do people create websites?
● How can text communicate content and structure on

a web page?
● How do I safely and appropriately make use of the

content published on the internet?
● What strategies can I use when coding to find and fix

issues?

Chapter 2 - Multi-Page Websites
● How can websites be used to address problems

in the world?
● What strategies can teams use to work better

together?
● How do I know what information can be trusted

online?

Lesson Progression: Unit 2 - Web Development

9

CS Discoveries Curriculum Guide

Chapter 1

Creating Web
Pages

Lesson 1: Exploring Websites
This lesson covers the purposes that a web page might serve, both for the users and the creators. The
class explores a handful of sample web pages and describes how each of those pages is useful for
users and how they might also serve their creators.

Lesson 2: Intro to HTML
This lesson introduces HTML as a solution to the problem of how to communicate both the content
and structure of a website to a computer. The lesson begins with a brief unplugged activity that
demonstrates the challenges of effectively communicating the structure of a web page. Then, the
class looks at an HTML page in Web Lab and discusses how HTML tags help solve this problem,
before using HTML to write their first web pages of the unit.

Lesson 3: Headings
This lesson continues the introduction to HTML tags, this time with headings. The class practices
using heading tags to create page and section titles and learns how the different heading elements are
displayed by default.

Lesson 4: Mini-Project: HTML Web Page
In this lesson, the class creates personal web pages on a topic of their choice. The lesson starts with a
review of HTML tags. Next, the class designs web pages, first identifying the tags needed to
implement them, and then creating the pages in Web Lab.

Lesson 5: Digital Footprint
This lesson takes a step back from creating the personal website to talk about the personal
information that people choose to share digitally. The class begins by discussing what types of
information they have shared on various websites, then they look at several sample social media
pages to see what types of personal information could be shared intentionally or unintentionally.
Finally, the class comes up with a set of guidelines to follow when putting information online.

Lesson 6: Styling Text with CSS
This lesson introduces CSS as a way to style elements on the page. The class learns the basic syntax
for CSS rule-sets and then explores properties that impact HTML text elements. Finally, they discuss
the differences between content, structure, and style when making a personal web page.

Lesson 7: IMini-Project: Your Personal Style
In this lesson, students create their own styled web pages. The lesson starts with a review of the CSS.
They then design the web page, identify which CSS properties they will need, and create their web
pages in Web Lab.

Lesson 8: Intellectual Property
Starting with a discussion of their personal opinions on how others should be allowed to use their
work, the class explores the purpose and role of copyright for both creators and users of creative
content. They then move on to an activity exploring the various Creative Commons licenses as a
solution to the difficulties of dealing with copyright.

Lesson 9: Using Images
The class starts by considering the ethical implications of using images on websites, specifically in
terms of intellectual property. They then learn how to add images to their web pages using the
tag and how to cite the image sources appropriately.

10

CS Discoveries Curriculum Guide

Chapter 1
Creating Web

Pages
(continued)

Lesson 10: Websites for Expression
This lesson introduces websites as a means of personal expression. Students first discuss the
different ways that people express and share their interests and ideas, then they look at a few
exemplar websites made by students from a previous course. Finally, everyone brainstorms and
shares a list of topics and interests to include in a personal website, creating a resource for developing
a personal website in the rest of the unit.

Lesson 11: Styling Elements with CSS
This lesson continues the introduction to CSS style properties, this time focusing more on non-text
elements. The class begins by investigating and modifying the new CSS styles on a Desserts of the
World page. Afterwards, everyone applies this new knowledge to their personal websites.

Lesson 12: Your Web Page - Prepare
In this lesson, students engage in the "prepare" stage of the problem solving process by deciding what
elements and style their web pages will have. They review the different HTML, CSS, and digital
citizenship guidelines, then design and plan their pages, as well as download and document the
images they will need. Afterwards, they reflect on how their plan will ensure that the website does
what it is designed to do.

Lesson 13: Project - Personal Web Page
After quickly reviewing the debugging process, the class goes online to create the pages that they
have planned out in previous lessons, with the project guides as a reference. Afterwards, they engage
in a structured reflection and feedback process before making any final updates.

Chapter 2
Multi-page
Websites

Lesson 14: Websites for a Purpose
In this lesson, students explore the different reasons people make websites. After brainstorming
various reasons that they visit websites, they investigate sample web sites that have been created to
address a particular problem and decide what different purposes those websites might serve for the
creators. The class then thinks of problems they might want to solve with their own websites.

Lesson 15: Team Problem Solving
Teams work together to set group norms and brainstorm what features they would like their websites
to have. The class starts by reflecting on what makes teams successful. Teams then make plans for
how they will interact and achieve success in their own projects before brainstorming ideas for their
website projects.

Lesson 16: Sources and Research
This lesson covers how to find relevant and trustworthy information online. After viewing and
discussing a video about how search engines work, students search for information relevant to their
sites, then analyze the sites for credibility to decide which are appropriate to use on their own website.

Lesson 17: CSS Classes
This lesson introduces CSS classes, which allow web developers to treat groups of elements they
want styled differently than other elements of the same type. Students first investigate and modify
classes on various pages, then create their own classes and use them to better control the
appearance of their pages. Teams then reflect on how they could use this skill to improve their
websites.

Lesson 18: Planning a Multi-Page Site
The class works in teams to plan out the final web sites, including a sketch of each page. They then
download the media that they will need for their sites. At the end of the activity, they decide how the
work will be distributed among them and report whether the entire team agreed to the plan.

11

CS Discoveries Curriculum Guide

Chapter 2
Multi-page
Websites

(continued)

Lesson 19: Linking Pages
The class begins this lesson by looking online for the internet’s first web page and discussing how its
use of links was what started the web. They then transition to Web Lab where they learn how to make
their own links, as well as good conventions that make it easier for users to navigate on a page. Last,
they reflect on their team project and what their personal goals are for the final stretch.

Lesson 20: Project - Website for a Purpose
In this lesson, teams are finally able to code the pages that they have been planning. Using the project
guide, the team works together and individually to code all of their pages, then puts all of the work
together into a single site.

Lesson 21: Peer Review and Final Touches
This lesson focuses on the value of peer feedback. The class first reflects on what they are proud of,
and what they would like feedback on. They then give and get that feedback through a structured
process that includes the project rubric criteria. Afterwards, everyone puts the finishing touches on
their sites and reflects on the process before a final showcase.

Unit 3 - Interactive Animations and Games

Overview and Timeline

In the Interactive Animations and Games
unit, students build on their coding
experience as they create programmatic
images, animations, interactive art, and
games. Starting off with simple, primitive
shapes and building up to more
sophisticated sprite-based games,
students become familiar with the
programming concepts and the design
process computer scientists use daily.
They then learn how these simpler
constructs can be combined to create
more complex programs. In the final
project, students develop a personalized,
interactive program. Along the way, they
practice design, testing, and iteration, as
they come to see that failure and
debugging are an expected and valuable
part of the programming process.

Big Questions

Unit Goals
By the end of the unit, students should be able to create an interactive animation or game that includes basic
programming concepts such as control structures, variables, user input, and randomness. They should manage this task
by working with others to break it down using objects (sprites) and functions. Throughout the process, they should give
and respond constructively to peer feedback, and work with their teammates to complete a project. Students should leave
this unit viewing themselves as computer programmers, and see programming as a fun and creative form of expression.

Major Projects
● Lesson 17: Project - Interactive Card
● Lesson 27: Project - Design a Game

There are two major projects in this unit, which are at the end of each chapter. Both offer students an opportunity to
demonstrate what they’ve learned while leveraging creativity and peer feedback. To learn more about these projects,
check out the descriptions in this unit’s lesson progression.

Tools
This unit uses Game Lab . For more detailed information, see the Learning Tools section of this curriculum guide.

12

CS Discoveries Curriculum Guide

Chapter 1 - Images and Animations
● What is a computer program?
● What are the core features of most programming

languages?
● How does programming enable creativity and

individual expression?
● What practices and strategies will help me as I

write programs?

Chapter 2 - Building Games
● How do software developers manage complexity

and scale?
● How can programs be organized so that common

problems only need to be solved once?
● How can I build on previous solutions to create even

more complex behavior?

Lesson Progression: Unit 3 - Interactive Animations and Games

13

CS Discoveries Curriculum Guide

Chapter 1

Images and
Animations

Lesson 1: Programming for Entertainment
The class is asked to consider the "problems" of boredom and self expression, and to reflect on how
they approach those problems in their own lives. From there, they will explore how Computer Science
in general, and programming specifically, plays a role in either a specific form of entertainment or as a
vehicle for self expression.

Lesson 2: Plotting Shapes
This lesson explores the challenges of communicating how to draw with shapes and use a tool that
introduces how this problem is approached in Game Lab.The class uses a Game Lab tool to
interactively place shapes on Game Lab's 400 by 400 grid. Partners then take turns instructing each
other how to draw a hidden image using this tool, which accounts for many of the challenges of
programming in Game Lab.

Lesson 3: Drawing in Game Lab
The class is introduced to Game Lab, the programming environment for this unit, and begins to use it to
position shapes on the screen. The lesson covers the basics of sequencing and debugging, as well as
a few simple commands. At the end of the lesson, students will be able to program images like the
ones they made with the drawing tool in the previous lesson.

Lesson 4: Shapes and Parameters
In this lesson, students continue to develop a familiarity with Game Lab by manipulating the width and
height of the shapes they use to draw. The lesson kicks off with a discussion that connects expanded
block functionality (e.g. different sized shapes) with the need for more block inputs, or "parameters."
Finally, the class learns to draw with versions of ellipse() and rect() that include width and height
parameters and to use the background() block.

Lesson 5: Variables
This lesson introduces variables as a way to label a number in a program or save a randomly
generated value. The class begins the lesson with a very basic description of the purpose of a variable
and practices using the new blocks, then completes a level progression that reinforces the model of a
variable as a way to label or name a number.

Lesson 6: Random Numbers
Students are introduced to th e randomNumber() block and how it can be used to create new behaviors
in their programs. They then learn how to update variables during a program and use those skills to
draw randomized images.

Lesson 7: Sprites
In order to create more interesting and detailed images, the class is introduced to the sprite object. The
lesson starts with a discussion of the various information that programs must keep track of, then
presents sprites as a way to keep track of that information. Students then learn how to assign each
sprite an image, which greatly increases the complexity of what can be drawn on the screen.

Lesson 8: Sprite Properties
Students extend their understanding of sprites by interacting with sprite properties. The lesson starts
with a review of what a sprite is, then moves on to Game Lab for more practice with sprites, using their
properties to change their appearance. The class then reflects on the connections between properties
and variables.

Lesson 9: Text
This lesson introduces Game Lab's text commands, giving students more practice using the coordinate
plane and parameters. At the beginning of the lesson, they are asked to caption a cartoon created in
Game Lab. They then move onto Code Studio where they practice placing text on the screen and
controlling other text properties, such as size.

https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/randomNumber/

14

CS Discoveries Curriculum Guide

Chapter 1

Images and
Animations
(continued)

Lesson 10: Mini-Project - Captioned Scenes
After a quick review of the code learned so far, the class is introduced to the first creative project of the
unit. Using the problem solving process as a model, students define the scene that they want to create,
prepare by thinking of the different code they will need, try their plan in Game Lab, then reflect on what
they have created. In the end, they also have a chance to share their creations with their peers.

Lesson 11: The Draw Loop
This lesson introduces the draw loop, one of the core programming paradigms in Game Lab. Students
learn how to combine the draw loop with random numbers to manipulate some simple animations first
with dots and then with sprites.

Lesson 12: Sprite Movement
In this lesson, the class learns how to control sprite movement using a construct called the counter
pattern, which incrementally changes a sprite's properties. After brainstorming different ways that they
could animate sprites by controlling their properties, students explore the counter pattern in Code
Studio, using the counter pattern to create various types of sprite movements.

Lesson 13: Mini-Project - Animation
In this lesson, the class is asked to combine different methods from previous lessons to create an
animated scene. Students first review the types of movement and animation that they have learned,
and brainstorm what types of scenes might need that movement. They then begin to plan out their own
animated scenes, which they create in Game Lab.

Lesson 14: Conditionals
This lesson introduces students to booleans and conditionals, which allow a program to run differently
depending on whether a condition is true. The class starts by playing a short game in which they
respond according to whether particular conditions are met. They then move to Code Studio where
they learn how the computer evaluates boolean expressions, and how they can be used to structure a
program.

Lesson 15: Keyboard Input
Following the introduction to booleans and if statements in the previous lesson, students are introduced
to a new block called keyDown() , which returns a boolean and can be used in conditionals statements
to move sprites around the screen. By the end of this lesson they will have written programs that take
keyboard input from the user to control sprites on the screen.

Lesson 16: Mouse Input
The class continues to explore ways to use conditional statements to take user input. In addition to the
keyboard commands learned yesterday, they learn about several ways to take mouse input. They also
expand their understanding of conditional to include else , which allows for the computer to run a
certain section of code when a condition is true, and a different section of code when it is not.

Lesson 17: Project - Interactive Card
In this cumulative project for Chapter 1, students plan for and develop an interactive greeting card
using all of the programming techniques they've learned to this point.

Chapter 2
Building
Games

Lesson 18: Velocity
After a brief review of how the counter pattern is used to move sprites, the class is introduced to the
idea of hiding those patterns in a single block, in order to help manage the complexity of programs.
They then head to Code Studio to try out new blocks that set a sprite's velocity directly, and look at the
various ways that they are able to code more complex behaviors in their sprites.

Lesson 19: Collision Detection
In this lesson, the class learns about collision detection on the computer. Working in pairs, they explore
how a computer could use math, along with the sprite location and size properties,h to detect whether
two sprites are touching. They then use the isTouching() block to create different effects when sprites
collide and practice using the block to model various interactions.

https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/isTouching/

15

CS Discoveries Curriculum Guide

Chapter 2
Building
Games

(continued)

Lesson 20: Mini-Project - Side Scroller
Students use what they have learned about collision detection and setting velocity to create simple side
scroller games. After looking at a sample side scroller game, they brainstorm what sort of side scroller
they would like, then use a structured process to program the game in Code Studio.

Lesson 21: Complex Sprite Movement
The class learns to combine the velocity properties of sprites with the counter pattern to create more
complex sprite movement. After reviewing the two concepts, they explore various scenarios in which
velocity is used in the counter pattern, and observe the different types of movement that result. In
particular, students learn how to simulate gravity. They then reflect on how they were able to get new
behaviors by combining blocks and patterns that they already knew.

Lesson 22: Collisions
In this lesson, the class programs their sprites to interact in new ways. After a brief review of how they
used the isTouching block, students brainstorm other ways that two sprites could interact. They then
use isTouching to make one sprite push another across the screen before practicing with the four
collision blocks (collide , displace , bounce , and bounceOff).

Lesson 23: Mini-Project - Flyer Game
Students use what they have learned about simulating gravity and the different types of collisions to
create simple flyer games. After looking at a sample flyer game, they brainstorm what sort of flyer they
would like, then use a structured process to program the game in Code Studio.

Lesson 24: Functions
This lesson covers functions as a way for students to organize their code, make it more readable, and
remove repeated blocks of code. The class learns that higher level or more abstract steps make it
easier to understand and reason about steps, then begins to create functions in Game Lab.

Lesson 25: The Game Design Process
This lesson introduces the process that students will use to design games for the remainder of the unit.
This process is centered around a project guide that asks students to define their sprites, variables, and
functions before they begin programming their game. They walk through this process in a series of
levels. At the end of the lesson, students have an opportunity to make improvements to the game to
make it their own.

Lesson 26: Using the Game Design Process
In this multi-day lesson, the class uses the problem solving process from Unit 1 to create a platform
jumper game. After looking at a sample game, they define what their games will look like and use a
structured process to build them. Finally, the class reflects on how the games could be improved, and
implements those changes.

Lesson 27: Project - Design a Game
Students plan and build original games using the project guide from the previous two lessons. Working
individually or in pairs, they plan, develop, and give feedback on the games. After incorporating the peer
feedback, students share out their completed games.

https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/

Unit 4 - The Design Process

Overview and Timeline

The Design Process unit transitions students
from thinking about computer science as a
tool to solve their own problems towards
considering the broader social impacts of
computing. Through a series of design
challenges, students are asked to consider
and understand the needs of others while
developing a solution to a problem. The
second half of the unit consists of an iterative
team project, during which students have the
opportunity to identify a need that they care
about, prototype solutions both on paper and
in App Lab, and test their solutions with real
users to get feedback and drive further
iteration.

Big Questions

Unit Goals
By the end of the unit, students should see the design process as a form of problem solving that prioritizes the needs of a
user. They should be able to identify user needs and assess how well different designs address them. In particular, they
know how to develop paper and digital prototypes, gather and respond to feedback about a prototype, and consider ways
different user interfaces do or do not affect the usability of their apps. Students should leave the unit with a basic
understanding of other roles in software development, such as product management, marketing, design, and testing, and
how to use what they have learned about computer science as a tool for social impact.

Major Projects
● Lesson 7: Project - Paper Prototype
● Lesson 16: Project - App Presentation

Students are encouraged to focus on the design process in the two major projects in this unit, which are at the end of
each chapter. To learn more about these projects, check out the descriptions in this unit’s lesson progression.

Tools
This unit uses the App Lab . For more detailed information, see the Learning Tools section in this curriculum guide.

16

CS Discoveries Curriculum Guide

Chapter 1: User Centered Design
● How do computer scientists identify the needs of

their users?
● How can we ensure that a user's needs are met by

our designs?
● What processes will best allow us to efficiently

create, test, and iterate upon our design?

Chapter 2: App Prototyping
● How do teams effectively work together to develop

software?
● What roles beyond programming are necessary to

design and develop software?
● How do designers incorporate feedback into

multiple iterations of a product?

Lesson Progression: Unit 4 - The Design Process

17

CS Discoveries Curriculum Guide

Chapter 1

User
Centered

Design

Lesson 1: Analysis of Design
The class explores a variety of different teapot designs to consider design choices. Building on this,
students explore the relationship between users, their needs, and the design of objects they use.

Lesson 2: Understanding Your User
Using user profiles, students explore how different users might react to a variety of products. Role
playing as a different person, each member of the class will get to experience designs through someone
else's eyes.

Lesson 3: User-Centered Design Micro Activity
In small groups, students use the design process to come up with ideas for smart clothing. From
brainstorming, to identifying users, to finally proposing a design, this activity serves as the first of several
opportunities in this unit for students to practice designing a solution for the needs of others.

Lesson 4: User Interfaces
In this lesson, students get to see how a paper prototype can be used to test and get feedback on
software before writing any code. To help out a developer with their idea, the class tests and provides an
app prototype made of paper.

Lesson 5: Feedback and Testing
Users have been testing an app, and they have lots of feedback for the developer. The class needs to
sort through all of this feedback, identify the common themes and needs, and start revising the prototype
to make it better meet the users' needs.

Lesson 6: Identifying User Needs
Up to this point, the users that the class has considered have all been remote, and the only information
from users has come through text or role playing. Now students get to rely on each other as potential
users, as pairs interview each other to identify needs that could be addressed by developing an app.

Lesson 7: Project - Paper Prototype
Using the interview information from the previous lesson, students come up with app ideas to address
the needs of their users. To express those ideas, and test out their effectiveness, each student creates
and tests paper prototypes of their own.

Chapter 2
App

Prototyping

Lesson 8: Designing Apps for Good
To kick off the app design project, the class organizes into teams and starts exploring app topics. Several
examples of socially impactful apps serve as inspiration for the project.

Lesson 9: Market Research
In this lesson, students dive into app development by exploring existing apps that may serve similar
users. In groups, they identify a handful of apps that address the same topic they are working on, and
use those apps to help refine the app idea they will pursue.

Lesson 10: Paper Prototypes
Paper prototypes allow developers to quickly test ideas before investing a lot of time writing code. In this
lesson, teams explore some example apps created in App Lab and use these examples to help inform
the first paper prototypes of their apps.

Lesson 11: Prototype Testing
In this lesson, teams test out their paper prototypes with other members of the class. As one student role
plays as the computer, one narrates, and the rest observe, teams will get immediate feedback on their
app designs, which will inform the next version of their app prototypes.

Example of paper prototype from lessons 10 and 11

18

CS Discoveries Curriculum Guide

Chapter 2
App

Prototyping
(continued)

Lesson 12: Digital Design
Having developed, tested, and gathered feedback on a paper prototype, teams now move to App Lab to
build the next iteration of their apps. Using the drag-and-drop Design Mode, each team member builds
out at least one page of their team's app, responding to the feedback they received in the previous round
of testing.

Lesson 13: Linking Screens
Building on the screens that they designed in the previous lesson, teams combine screens into a single
app. Simple code can then be added to make button clicks change to the appropriate screen.

Lesson 14: Testing the App
In this lesson, teams run another round of user testing with their interactive prototype. Feedback
gathered from this round of testing will inform the final iteration of the app prototypes.

Lesson 15: Improving and Iterating
Using the feedback from the last round of testing, teams implement changes that address the needs of
their users. Each team tracks and prioritizes the features they want to add and the bugs they need to fix.

Lesson 16: Project - App Presentation
Each team prepares a presentation to "pitch" the app they've developed. This is the time students can
share the struggles, triumphs, and plans for the future.

Unit 5 - Data and Society

Overview and Timeline

The Data and Society unit is about the
importance of using data to solve
problems and it highlights how
computers can help in this process. The
first chapter explores different systems
used to represent information in a
computer and the challenges and
tradeoffs posed by using them. In the
second chapter, students learn how
collections of data are used to solve
problems, and how computers help to
automate the steps of this process. In
the final project, students gather their
own data and use it to develop an automated solution to a problem.

Big Questions

Unit Goals
By the end of the unit, students should have a broad understanding of the role of data and data representation in solving
information problems. They should be able to explain the necessary components of any data representation scheme, as
well as the particulars of binary and the common ways that various types of simple and complex data are represented in
binary code. Students should also be able to design and implement a data-based solution to a given problem and
determine how the different aspects of this problem solving process could be automated.

Major Projects
● Lesson 8: Project - Create a Representation
● Lesson 15: Project - Make a Recommendation

There are two major projects in this unit, which are at the end of each chapter. Each project asks students to take a
different approach to looking data — the first focuses on building a system to represent complex data, and the second
focuses on processing data to make a recommendation. To learn more about these projects, check out the descriptions in
this unit’s lesson progression.

19

CS Discoveries Curriculum Guide

Chapter 1: Representing Information
● Why is representation important in problem solving?
● What features does a representation system need to

be useful?
● What is necessary to create usable binary

representation systems?
● How can we combine systems together to get more

complex information?

Chapter 2: Solving Data Problems
● How does data help us to solve problems?
● How do computers and humans use data

differently?
● What parts of the data problem solving process

can be automated?
● What kinds of real world problems do

computers solve by using data?

Lesson Progression: Unit 5 - Data and Society

20

CS Discoveries Curriculum Guide

Chapter 1

Representing
Information

Lesson 1: Representation Matters
This first lesson provides an overview of what data is and how it is used to solve problems. Groups
use a data set to make a series of meal recommendations for people with various criteria. Afterward,
groups compare their responses and discuss how the different representations of the meal data
affected how they were able to solve the different problems.

Lesson 2: Patterns and Representation
This lesson looks closer at what is needed to create a system of representation. Groups create
systems that can represent any letter in the alphabet using only a single stack of cards. They then
create messages with their systems and exchange with other groups to ensure the system worked as
intended. Finally, the class discusses commonalities between working systems while recognizing that
there are many possible working solutions.

Lesson 3: ASCII and Binary Representation
This lesson introduces students to a formal binary system for encoding information: the ASCII system
for representing letters and other characters. At the beginning of the lesson, the teacher introduces the
fact that computers must represent information using either "on" or "off." The class then learns about
the ASCII system for representing text using binary symbols and practices using this system. Finally,
they encode their own messages using ASCII.

Lesson 4: Representing Images
This lesson continues the study of binary representation systems, this time with images. The class is
introduced to the concept of splitting images into squares or "pixels," which can then be turned on or
off individually to make an entire image. After doing a short set of challenges using the Pixelation
Widget, students make connections between the system for representing images and the ASCII
system for representing text that they learned about in the previous lesson.

Lesson 5: Representing Numbers
This lesson introduces students to the binary number system. With a set of cards that represent the
place values in a binary (base-2) number system, the class turns bits "on" or "off" by turning cards face
up and face down, then observes the numbers that result from these different patterns. Eventually, the
pattern is extended to a generic 4-bit system.

Lesson 6: Keeping Data Secret
Students have a discussion on the different levels of security they would like for personal data. Once
the class has developed an understanding of the importance of privacy, they learn about the process
of encrypting information by enciphering a note for a partner and deciphering the partner's note. The
class concludes with a discussion about the importance of both physical and digital security.

Lesson 7: Combining Representations
This lesson combines all three types of binary representation systems (ASCII characters, binary
numbers, and images) to explore ways to encode more complex types of information in a record. After
seeing a series of bits and being asked to decode them, students are introduced to the idea that
understanding binary information requires an understanding of both the system that is being used, and
the meaning of the information encoded.

Lesson 8: Project - Create a Representation
The class designs structures to represent their perfect day using the binary representation systems
they've learned in this chapter. After deciding which pieces of information the record should capture,
students decide how a punch card of bytes of information will be interpreted to represent those pieces
of information. Afterwards, they use the ASCII, binary number, and image formats they have learned to
represent their perfect days and try to decipher what a partner's perfect day is like.

21

CS Discoveries Curriculum Guide

Chapter 2
Solving Data

Problems

Lesson 9: Problem Solving and Data
This lesson covers how the problem solving process can be tailored to deal with data problems. The
class is tasked with deciding what a city most needs to spend resources on. They must find and use
data from the internet to support their decision.

Lesson 10: Problem Solving with Big Data
This lesson covers how data is collected and used by organizations to solve problems in the real
world. Students look at three scenarios that could be solved using data and brainstorm the types of
data they would want to use to solve each problem, as well as strategies they could use to collect the
data. Each scenario also includes a video about a real-world service that has solved a similar problem
with data.

Lesson 11: Structuring Data
This lesson goes further into the interpretation of data, including how to clean and visualize raw data
sets. The class first looks at how presenting data in different ways can help people to understand it
better. After seeing how cleaning and visualization can help people make better decisions, students
look at which parts of this process can be automated, and which parts need a human.

Lesson 12: Making Decisions with Data
This lesson gives students a chance to practice the data problem solving process introduced in the
last lesson. Not all questions have right answers, and in some cases the class can and should decide
that they need to collect more data. The lesson concludes with a discussion about how different
people could draw different conclusions from the same data, and how collecting different data might
have affected the decisions they made.

Lesson 13: Interpreting Data
Students begin the lesson by looking at a cake preference survey where respondents specified both a
cake and an icing flavor. They discuss how knowing the relationship between cake and icing
preference helps them better decide which combination to recommend. Students are then introduced
to cross tabulation, which allows them to graph relationships to different preferences. They use this
technique to find relationships in a preference survey, then brainstorm the different types of problems
that this process could help solve.

Lesson 14: Automating Data Decisions
In this lesson, the class looks at a simple example of how a computer could be used to complete the
decision making step of the data problem solving process. Students are given the task of creating an
algorithm that suggests a vacation spot. They then create rules, or an algorithm, that a computer could
use to make this decision automatically. Students share their rules and what choices their rules would
make with the class data. Next, they use data from their classmates to test whether their rules would
make the same decision that a person would. The lesson concludes with a discussion about the
benefits and drawbacks of using computers to automate the data problem solving process.

Lesson 15: Project - Make a Recommendation
To conclude this unit, the class designs ways to use data to make recommendations or predictions to
help solve a problem. In the first several steps, students brainstorm problems, perform simple
research, and define a problem of their choosing. They then decide what kind of data they want to
collect, how it could be collected, and how it could be used, before exchanging feedback and giving a
final presentation.

Unit 6 - Physical Computing

Overview and Timeline
In the Physical Computing unit, students
further develop their programming skills,
while exploring more deeply the role of
hardware platforms in computing. Harkening
back to the Input/Storage/Processing/Output
model for a computer, students look towards
modern “smart” devices to understand the
ways in which non-traditional computing
platforms take input and provide output in
ways that couldn't be done with the traditional
keyboard, mouse, and monitor.

Using App Lab and Adafruit’s Circuit
Playground, students develop programs that utilize the same hardware inputs and outputs that we see in many modern
smart devices, and they get to see how a simple rough prototype can lead to a finished product. The unit concludes with a
design challenge that asks students to use the Circuit Playground as the basis for an innovation of their own design.

Big Questions

Unit Goals
By the end of the unit, students should be able to design and build a physical computing device that integrates hardware
inputs and outputs with software. This unit builds on the skills and understandings from the Interactive Animations and
Games unit with more sophisticated programming constructs, such as arrays, for-loops, and parameters, as well as
deepens students’ understanding of the types of input and output that can be used in computing. Students should leave
the unit feeling equipped to use physical computing to solve problems in fun and innovative ways.

Major Projects
● Lesson 9: Project - Make a Game
● Lesson 16: Project - Prototype an Innovation

There are two major projects in this unit, which are at the end of each chapter. Each project is cumulative for the chapter
completed, and each takes a different approach to hardware — the first focusing on building a game that uses the inputs
and outputs of Circuit Playground and the second focusing on developing and testing an physical prototype of an
innovative computing device. To learn more about these projects, check out the descriptions in this unit’s lesson
progression.

Tools
This unit uses Maker Toolkit in App Lab. For more detailed information, see the Learning Tools section of this
curriculum guide.

22

CS Discoveries Curriculum Guide

Chapter 1: Programming with Hardware

● How does software interact with hardware?
● How can computers sense and respond to their

environment?
● What kind of information can be communicated

with hardware outputs?

Chapter 2: Building Physical Prototypes

● How do programmers work with larger amounts of
similar values?

● How can complex real-world information be
represented in code?

● How can simple hardware be used to develop
innovative new products?

Lesson Progression: Unit 6 - Physical Computing

23

CS Discoveries Curriculum Guide

Chapter 1

Programming
with

Hardware

Lesson 1: Innovations in Computing
In this lesson, students explore a wide variety of new and innovative computing platforms while
expanding their understanding of what a computer can be.

Lesson 2: Designing Screens with Code
By reading and changing the content on the screen of an app, the class starts to build apps that only
need a single screen. Even with just one screen, students can begin to see that these techniques
allow for lots of user interaction and functionality.

Lesson 3: The Circuit Playground
In this lesson, students get to know the Circuit Playground, the circuit board that will be used
throughout the rest of this unit. Using App Lab, they develop programs that use the Circuit Playground
for output.

Lesson 4: Input Unplugged
Students experience two different ways that an app can collect input from a user, while learning more
about the event-driven programming model used in App Lab.

Lesson 5: Board Events
Using the hardware buttons and switch, students develop programs that use the Circuit Playground as
an input.

Lesson 6: Getting Properties
This lesson introduces students to the getProperty block, which allows them to access the properties
of different elements with code. They first practice using the block to determine what the user has
input in various user interface elements. Students later use getProperty and setProperty together with
the counter pattern to make elements move across the screen. A new screen element, the slider, and
a new event trigger, onChange, are also introduced.

Lesson 7: Analog Input
Students get to explore the analog inputs on the Circuit Playground, writing programs that respond to
the environment through sensors.

Lesson 8: The Program Design Process
This lesson introduces students to the process they will use to design programs of their own
throughout this unit. This process is centered around a project guide that asks students to sketch out
their screens, identify elements of the Circuit Playground to be used, define variables, and describe
events before they begin programming (a process very similar to the Game Design Process that
students used in Unit 3). Students begin by playing a tug o' war style game where the code is hidden.
They discuss what they think the board components, events, and variables would need to be to make
the program. Then, they are then given a completed project guide that shows one way to implement
the project, and are walked through this process in a series of levels. At the end of the lesson,
students have an opportunity to make improvements to the program to make it their own.

Lesson 9: Project: Make a Game
For this project, students design and create a game that leverages the new inputs and outputs that are
available to them. This project is purposefully left very open-ended to empower students to think
broadly about how physical output might be useful in an app, while still giving them a chance to review
the program development process and try out the new features available through the Circuit
Playground.

Students using the Circuit Playground

24

CS Discoveries Curriculum Guide

Chapter 2
Building
Physical

Prototypes

Lesson 10: Arrays and Color LEDs
In this lesson, students are introduced to the ring of color LEDs, which are exposed as an array called
colorLeds. Students learn how to access and control each LED in an array individually, preparing them
to access multiple LEDs through iteration later in the chapter.

Lesson 11: Making Music
In this lesson, students will use the Circuit Playground’s buzzer feature to its full extent by producing
sounds, notes, and songs. Students start with a short review of the buzzer's frequency and duration
parameters, then move on to the concept of musical notes. Notes allow students to constrain
themselves to frequencies that are used in Western music and provide a layer of abstraction that helps
them to understand which frequencies might sound good together. Once students are able to play
notes on the buzzer, they use arrays to hold and play sequences of notes, and compose simple songs.

Lesson 12: Arrays and For Loops
Students learn to combine lists and for-loops in this lesson, which allows them to write code that
impacts every element of a list, regardless of how long it is. The class uses this structure to write
programs that process all of the elements in lists, including the list of color LEDs.

Lesson 13: Accelerometer
In this lesson, students explore the Circuit Playground’s accelerometer feature and its capabilities.
They become familiar with the accelerometer’s events and properties as they create multiple programs
with the feature, similar to those they’ve likely come across in real world applications.

Lesson 14: Functions with Parameters
This lesson starts with a quick review of parameters in the context of the App Lab blocks that students
have seen recently. Students then look at examples of parameters within user-created functions in
App Lab, and create and call functions with parameters to control multiple elements on a screen.
Afterward, they use for loops to iterate over an array, passing each element into a function. Last,
students use what they have learned to create a star catching game.

Lesson 15: Circuits and Physical Prototypes
In this lesson, students wire simple circuits to create a physical prototype using low-cost and
easily-found materials.

Lesson 16: Project: Prototype an Innovation
This final project challenges students to develop and test a prototype for an innovative computing
device that interacts with the physical world through various types of input and output, whichallow for
interesting and unique user interactions. This project is an opportunity for students to showcase their
technical skills, but they will also need to demonstrate collaboration, constructive peer feedback, and
iterative problem solving as they encounter obstacles along the way. This project should be
student-directed whenever possible, and provide an empowering and memorable conclusion to the
final unit of CS Discoveries.

Learning Tools
Web Lab
Where in the curriculum: Unit 2 - Web Development

Description
Web Lab is a browser-based text editor for building web
pages in HTML and CSS. It features a text editor with many
helpful tools for creating and debugging HTML and CSS
code, including a live preview of the web page that updates
in real time and the ability to publish the completed web
page to its own unique URL. Try the tool at
code.org/weblab.

Game Lab
Where in the curriculum: Unit 3 - Interactive Animations and Games
Description
Game Lab is a programming environment for developing
animations and games using JavaScript. Students start by
creating sprites - characters whose appearance,
movement, and interactions can be controlled through
code. A preloaded library of images and sounds and a
full-featured pixel editor allow students to customize the
look of their sprites. Then, using Game Lab, students learn
fundamental programming constructs while being given the
freedom to create their own virtual worlds. Students can
program using either blocks or text and instantly switch
between either mode. Game Lab allows for activities with a
scoped toolbox of commands that focuses attention on the
specific blocks and concepts being introduced in that
lesson. In addition, embedded support tools help students track down errors in their code. Try the tool at
code.org/gamelab.

App Lab
Where in the curriculum: Unit 4 - The Design Process
Description
App Lab is a programming environment for developing
applications in JavaScript. A drag-and-drop editor allows
students to add and edit page elements without having to
write the associated HTML and CSS. Working in either
blocks or text, students define the behavior of these page
elements using code. The scoped toolbox of commands
focuses attention on the specific blocks or concepts being
introduced in that lesson. The embedded support tools help
students track down errors in their code. Thanks to these
features, App Lab is particularly well-suited for quickly
prototyping apps. Try the tool at code.org/applab.

25

CS Discoveries Curriculum Guide

Maker Toolkit
Where in the curriculum: Unit 6 - Physical Computing

Description
The Maker Toolkit is an environment that allows you to
communicate with the Circuit Playground using a set of
additional commands available in App Lab. Using the
same drag-and-drop editor that students have become
comfortable with in App Lab and Game Lab, students can
turn on LEDs, read sensors, and write programs that use
physical hardware for user input and output. By integrating
these commands, App Lab allows you to quickly prototype
apps that combine hardware and software without the
additional challenge of transitioning to a new language or
tool or worrying about wiring and electronics. Try the tool at
studio.code.org/maker/setup.

26

CS Discoveries Curriculum Guide

Unplugged and Plugged Activities
Unplugged Activities
What are they?
We refer to activities where students are not working on a computer as
“unplugged.” Students will often be working with pencil and paper, or
physical manipulatives.

How are they used?
Unplugged activities are more than just an alternative for the days
when the computer lab is full. They are intentionally placed, often
kinesthetic, opportunities for students to digest concepts in
approachable ways. Unplugged lessons are particularly good for
building and maintaining a collaborative classroom environment, and
they are useful touchstone experiences you can refer to when
introducing more abstract concepts.

Tips for Effectively Teaching Unplugged Activities
● Don’t skip these activities!
● Teach units in the order they are written. The sequence is designed to scaffold student understanding.
● Help students identify the computer science concepts underlying these approachable activities.
● Refer back to unplugged activities to reinforce concepts in subsequent plugged lessons.

Plugged Activities

What are they?
We refer to activities where students are working on a computer as
“plugged.” Students may be conducting research, completing a
programming assignment, or using an interactive “widget”.

How are they used?
Plugged activities are designed to allow students to get hands-on
with tools and concepts. That said, plugged lessons typically have
many of the same features of their unplugged counterparts. Lessons
will begin and end with discussions or activities that help motivate
and synthesize learning. Students are encouraged and often even
required to work with one another. Key moments for you to check in
with your students are noted in lesson plans. Students will be using a
computer, but the ways students interact with each other and your
role as the teacher should remain largely unchanged.

Tips for Effectively Teaching Plugged Activities
● Use warm ups, wrap ups, and suggested check-ins to ensure students are synthesizing concepts.
● Encourage students to work with one another to maintain the collaborative classroom culture more easily

established during unplugged activities.

“Plugged” doesn’t mean the computer is the students’ teacher! If anything, you will need to take a more active role in
checking student progress since it’s hard to know what’s happening when students are working on screens.

27

CS Discoveries Curriculum Guide

Teaching and Learning Strategies
The teaching and learning strategies listed below are generally useful across different lessons and units. We believe these
strategies lead to positive classroom culture and, ultimately, student learning.

Pair Programming
What is it?
Pair programming is a technique in which two programmers work together at one computer. One, the driver, writes code
while the other, the navigator, directs the driver on the design and setup of the code. The two programmers switch roles
often. Pair programming has been shown to:

● improve computer science enrollment, retention, and students' performance
● increase students' confidence
● develop students' critical thinking skills
● introduce students to the “real world” working environment

How does it connect to the curriculum?
In CS Discoveries, there are many lessons on the computer (plugged lessons) during which students develop
programming skills through online progressions. Pair programming can help to foster a sense of camaraderie and
collaboration in your classroom during sets of plugged lessons. It has been shown to increase the enrollment, retention,
and performance of students in computer science classes. It promotes diversity in the classroom by reducing the so-called
“confidence gap” between female and male students, while increasing the programming confidence of all students.

How do I use it?
To get students pair programming:

1. Form pairs.
2. Give each pair one computer to work on.
3. Assign roles.
4. Have students start working.
5. Ensure that students switch roles at regular

intervals (every 3 to 5 minutes).
6. Ensure that navigators remain active

participants.

It can be hard to introduce pair programming after
students have worked individually for a while, so we
recommend that teachers start with pair programming in
the first few plugged lessons. Just like any other
classroom technique, you may not want to use this all
the time as different types of learners will respond differently to working in this context. Once you have established pair
programming as a practice early on, it will be easier to come back to later.

Resources
Code.org also has a feature to help both students get “credit” on their accounts for the work they do together. Check out
the blog on pair programming: bit.ly/pair-programming-feature

Videos :
● For Teachers: bit.ly/pair-programming- teacher (Created for CS Fundamentals, but still applicable)
● For Students: bit.ly/pair-programming- student

The National Center for Women & Information Technology (NCWIT) has a great resource about the benefits of pair
programming. Check it out at: http://bit.ly/pair-programming-ncwit

28

CS Discoveries Curriculum Guide

http://bit.ly/pair-programming-feature
http://bit.ly/teaching-pair-programming
http://bit.ly/student-pair-programming
http://bit.ly/pair-programming-ncwit

Think-Pair-Share
What is it?
Think-Pair-Share is a three part activity in which students are presented with a problem or task to work on.

Think: First, students work individually. Working individually gives
students the opportunity to collect their thoughts before
communicating them with others. They should write down their
thoughts in a journal for later sharing.

Pair: Once students have had time to work individually, they then
enter the “Pair” stage in which they work with a small group. These
groups can consist of two or three students. The group discusses
the thoughts each member collected during the “Think” stage. The
goal is for students to engage in a low-risk discussion where they
get a chance to share their ideas with others. This activity is
especially useful in the early stages of developing collaborative
skills such as attentive listening to a partner.

Share: Finally, the groups share out some of the ideas they discussed to the whole class, and the discussion will
continue as needed in the whole group setting. This allows major ideas to bubble up to the whole group, where
everyone can hear and benefit from them.

How does it connect to the curriculum?
Almost every lesson in the CS Discoveries curriculum involves some kind of discussion that uses a version of
Think-Pair-Share. It is one of the most common practices used for warm ups and wrap ups. Think-Pair-Share is used for
these discussions as it gives students time to think on their own and engage with the content before talking to someone
else. When students talk to their partner, it should be a low risk environment to try out an idea. It also allows everyone to
play a part in the discussion, even if they don’t like talking in the whole class environment.

How do I use it?
● Whenever you are given a prompt, consider giving students time to work individually and then with a partner

before bringing the discussion or creation to the whole class.
● View Think-Pair-Share as a way for the class to learn from each other as much as possible. As the lead learner,

you should direct the conversation without giving away answers or cutting off the conversation too early.

29

CS Discoveries Curriculum Guide

Peer Feedback

What is it?
Peer feedback is the practice where students give each other feedback on work they have done. The feedback is meant
to provide opportunities for students to learn from each other, both by seeing ways others approached the same problem
and by incorporating feedback to improve their own work.

How does it connect to the curriculum?
Throughout the CS Discoveries curriculum, there are many
activities that have structured moments for students to give each
other peer feedback. We support these activities with structured
guides for the peer feedback process. Many of the guides follow a
similar format where students are first given the opportunity to
express what they would like feedback on. Then the peer reviewer
gives feedback on some standard questions, often related to the
goals of the work, as well as leaving some free response
feedback using the sentence starters “I like,” “I wish,” and “What
if.” Finally, students are encouraged to reflect on the feedback
they received and think about ways to incorporate it in the future.

How do I use it?
● Create a structured peer feedback process.
● Decide who is giving feedback to whom.
● Allow students to share some areas that they would like feedback on.
● Give students time to provide feedback.
● Give students time to respond and incorporate feedback.
● Provide examples of constructive feedback.
● Have students use sentence starters for their feedback such as: I like, I wish, What if
● Treat this as a skill that students develop throughout the course and which they will need to be taught.

30

CS Discoveries Curriculum Guide

Debugging

What is it?
Debugging is the act of finding and fixing problems in code.
It’s a major part of programming and a critical skill for students
to develop. Your role as the teacher is to avoid directly
debugging for your students, but to help guide them in the
development of their own debugging skills.

How does it connect to the curriculum?
Occasionally students will encounter a debugging level where
they are explicitly asked to identify and fix bugs in provided
code. While these are great opportunities to highlight specific
kinds of errors and misconceptions, it’s important to build a
culture of constant debugging, as this isn’t an activity that is
done in isolated moments.

As with most things, people get better at debugging by doing it! That said, reflective strategies can help students learn
more from debugging. Encourage students to talk about their bugs and how they were able to address them. Students
may create bug logs in their journals or a bug poster for the classroom. If students are too specific with the bugs that they
have found, consider reframing what they say into something more generally useful (e.g. “The ‘r’ and the ‘c’ were
switched.” could become “My keyword was not spelled correctly.”)

How do I use it?
● Ask questions about the code (and what changes were made when the bug was introduced), making sure that the

students can clearly explain how the code is intended to work.
● Have students read their code aloud, line by line, explaining the purpose of each command.
● Encourage students to ask aloud the same questions that you have been asking them.
● Avoid finding the bug for students or being too specific with your questioning.
● Celebrate discovering (and fixing) new types of bugs to normalize the debugging process.

Resources
See Appendix C for a more detailed teacher facing guide to debugging along with a student facing debugging resource.

31

CS Discoveries Curriculum Guide

Journaling
What is it?
Journaling can take many different forms, but in general it is
a tool for individual reflection in a form that can be revisited
as students develop their skills and understandings. This
provides an important opportunity for students to reflect on
their own learning in a personal way and record their growth
throughout the course.

How does it connect to the curriculum?
CS Discoveries frequently provides opportunities for student
journaling, often as a tool for individual sensemaking after
having completed an activity as a class. When students are
asked to journal, it is done with the assumption that they will
have access to their journal writings throughout the course
as a tool for review and reflection. Occasionally students are
also asked to revisit specific journal prompts. The medium used for journaling can vary, depending on classroom needs.
Whichever format you choose should allow for consistent access by both the student and the teacher. The most common
approaches include:

● Physical Notebooks: We recommend that notebooks be kept together and not allowed to leave the classroom.
Composition book style binding tends to be more effective for this purpose, rather than spiral-bound notebooks.

● Digital Documents: Whether you use Google Docs, a blogging platform, or another computer-based tool, the
most important thing to consider is your access as a teacher. Find a tool that allows you consistent access to the
journal so that you may use it to check for understanding.

How do I use it?

● Provide students a journal at the beginning of the school year.
● Prompt students to journal about specific challenges or bugs they encounter.
● Give students time to revisit previous journal entries and reflect on their growth.

32

CS Discoveries Curriculum Guide

Student Practices
The work students do in CS Discoveries is connected by a core set of practices developed over time. These student
practices provide coherence and represent the high-level skills and dispositions students develop throughout the course.
In the curriculum you will find reminders of moments when students can reflect on this development, and all major projects
include an opportunity for student reflection on their growth in each practice.

Problem Solving Process
The Problem Solving Process is a tool for structured problem solving that is woven throughout the entire
course to promote student growth and development. Having a strategy for approaching problems can
help you develop new insights and come up with new and better solutions. This is an iterative process
that is broadly useful for solving all kinds of problems:

Each unit leverages the problem solving process in a different way.

33

CS Discoveries Curriculum Guide

Problem Solving
Use a structured problem solving process to help address new problems
View challenges as solvable problems
Break down larger problems into smaller components

Persistence
Expect and value mistakes as a natural and productive part of problem solving
Continue working towards solutions in spite of setbacks
Iterate and continue to improve partial solutions

Creativity
Incorporate personal interests and ideas into activities and projects
Experiment with new ideas and consider multiple possible approaches
Extend or build upon the ideas and projects of others

Collaboration
Work with others to develop solutions that incorporate all contributors
Mediate disagreements and help teammates agree on a common solution
Actively contribute to the success of group projects

Communication
Structure work so that it can be easily understood by others
Consider the perspective and background of your audience when presenting your work
Provide and accept constructive feedback in order to improve your work

Define
● Determine the problem

you are trying to solve
● Identify your constraints
● Describe what success

will look

Prepare
● Brainstorm / research

possible solutions
● Compare pros and cons
● Make a plan

Try
● Put your plan

into action

Reflect
● Compare your results to the goals

you set while defining the problem
● Decide what you can learn from

this or do better next time
● Identify any new problems you

have discovered

Unit 1
Problem Solving
and Computing

Unit 2
Web

Development

Unit 3
Animations and

Games

Unit 4
The Design

Process

Unit 5
Data and
Society

Unit 6
Physical

Computing

The Problem
Solving Process

The Problem
Solving Process
for Programming

The Problem
Solving Process
for Programming

The Problem
Solving Process
for Design

The Problem
Solving Process
for Data

The Problem
Solving Process
for Programming

The Problem Solving Process for Programming
Used in: Unit 2 - Web Development, Unit 3 - Interactive Animations and Games, and Unit 6 - Physical Computing

The Problem Solving Process for Design
Used in: Unit 4 - The Design Process

The Problem Solving Process for Data
Used in: Unit 5 - Data and Society

34

CS Discoveries Curriculum Guide

Define
● Read the instructions

carefully to ensure you
understand the goals

● Rephrase the problem
in your own words

● Identify any new skills
you are being asked to
apply

● Look for other
problems you’ve
solved that are similar
to this one

● If there is starter code,
read it to understand
what it does

Prepare
● Write out an idea in

plain language or
pseudocode

● Sketch out your idea
on paper

● List what you already
know how to do and
what you don’t yet
know

● Describe your idea to a
classmate

● Review similar
programs that you’ve
written in the past

Try
● Write one small

piece of code at a
time

● Test your program
often

● Use comments to
document what your
code does

● Apply appropriate
debugging strategies

● Go back to previous
steps if you get stuck
or don’t know
whether you’ve
solved the problem

Reflect
● Compare your finished program to

the defined problem to make sure
you’ve solved all aspects of the
problem

● Ask a classmate to try your program
and note places where they
struggle or exhibit confusion

● Ask a classmate to read your code
to make sure your documentation
is clear and accurate

● Try to “break” your program to find
types of interactions or input the
program could handle better

● Identify a few incremental changes
you could make in the next iteration

Define
● Identify potential

users
● Interview users
● Read user profiles
● Identify needs and

wants

Prepare
● Connect needs and wants to specific

problems
● Research how others have addressed

these issues
● Brainstorm potential solutions
● Discuss pros and cons
● Identify the minimum work needed to

test your assumptions

Try
● Draw your product on

paper
● Develop a low fidelity

prototype to communicate
your design

● Share prototypes with
potential end users for
feedback

Reflect
● Present to

stakeholders
● Review user

feedback

Define
● Decide what problem

you are trying to solve
or what question you
are trying to answer

● Make sure you
understand your target
audience (it could be
you!) and what
specifically they need

● Identify the parts of your
problem you could
address with data, and
how more information
could help

Prepare
● Decide what kinds of data you

will collect
● Decide how you will collect

the data and in which format
you will collect it

● Anticipate possible
challenges in data collection
and modify your plan to
account for them

● Develop a plan for how you
will analyze your data and
make sure your data will be
useful for that kind of analysis

Try
● Collect the data using the

plan you created
● Clean the data by removing

errors, unexpected values,
and inconsistencies

● Visualize the data by
creating tables, graphs, or
charts that help you see
broad trends

● Interpret the trends and
patterns in the visualizations
based on your knowledge of
the problem

Reflect
● Review what you’ve

learned about your
question or problem

● Decide if what you’ve
learned has solved your
problem and allows you
to make a decision, or if
you need to go back to
one of the previous
steps

Course Resources
The CS Discoveries curriculum is made up of student-facing and teacher-facing components. Teachers will access
curriculum materials in two different places on the Code.org website: our Code Studio platform and in the teacher-facing
curriculum. The table below outlines what you can do in each of these places:

The following pages contain an overview of the layout and organization of these important course resources.

Code.org Website
Log in to Code Studio with your teacher account. The website header will help you navigate the site:

The Code Studio home page is the starting point for everything in the course. To get started with your students, you will
need to create a section. For details on how to create a section, visit the getting started support articles at
support.code.org .

Once you’ve assigned your CS Discoveries students to a section, a tile will appear on the homepage that can be used to
access the course overview page. This is your starting point for lesson planning and all the resources you need to teach
the course.

35

CS Discoveries Curriculum Guide

Code Studio Teacher-facing Curriculum

● Access all online student-facing lesson materials
○ Review completed student work, including

program code and assessment questions
● Create and manage sections of students, including

assigning courses and lessons to students

● Access teacher-facing lesson plans that provide
detailed context for how to deliver lessons

● Navigate links to all printable materials needed for
the course

● Explore course resources such as: standards
mapping, vocabulary lists, code documentation,
PDFs of lessons, etc.

http://support.code.org/

Course Overview Pages

Code Studio — Course Overview
The course overview page on Code Studio [studio.code.org/course/csd] is a hub for managing your course, and includes
the following:

Teacher-facing Curriculum — Course Overview
This page [curriculum.code.org/csd] provides an overview of the teacher-facing curriculum, and includes the following:

36

CS Discoveries Curriculum Guide

http://studio.code.org/course/csd
http://curriculum.code.org/csd

Unit Overview Pages

Code Studio — Unit Overview

Using the toggle on the top-right of the unit overview page in Code Studio, yield one of two options: a detailed view of the
unit or a collapsed view:

37

CS Discoveries Curriculum Guide

Code Studio - Iconography on Unit Overview Page
When looking at the detailed view of the unit overview page (e.g., studio.code.org/s/csd1) described above, you will notice
a number of different icons that represent different types of levels within a given lesson. Those icons are listed below,
along with a brief description of what they represent and how you might use them as a teacher.

38

CS Discoveries Curriculum Guide

This small check mark symbol superimposed over the level is an indication for you, the
teacher, that the level is a good candidate for assessing what your students have learned.
This symbol does not guarantee that the level has been automatically checked for
correctness. Instead, it’s there to help guide you in selecting levels to focus on for
assessment. Assessment check marks can be found on “question” and “online” level types
(see below for details).

These levels contain instructions, text, or images to help you run a class activity. Lesson
instructions will indicate how these levels should be incorporated into the activity. A lesson
overview provides a short activity description and links to documents used throughout the
lesson.

Consider going over these as a whole class activity. These also provide good stopping
points to check in with the students and make sure everyone is together before moving on to
the next set of tasks.

Video levels contain a video to be used in the curriculum, and are typically hosted in multiple
formats, including a downloadable file, to be compatible with a variety of technology needs
across classrooms.

Videos can be watched as a whole class to allow for group discussion afterward. Remind
students that they can use these videos as reference if they need some extra help during
programming.

Choice levels contain multiple activities for students to choose from. Some choice levels are
practice levels intended to provide students with multiple opportunities to practice skills
learned in the previous levels. Some choice levels are challenge levels intended to allow
students an opportunity to explore new concepts not covered in the lesson objectives.

These levels represent some sort of check for understanding, usually in the form of multiple
choice or free-response questions. You will find these levels in individual lessons, indicated
with an assessment icon, and these are intended to be used as formative assessment items.
Students can always see them and change their responses at any time.

Question levels are also found in the post-project test, found at the end of each unit. In these
cases, the items are meant to be summative assessment items.

These levels use a Code.org tool, widget, or programming environment like App Lab. An
instructions panel appears on these levels to help explain any new content introduced in the
level, provide a checklist of tasks to complete, and may include starter code. Teachers can
review their students’ code from the Teacher Panel.

Using these levels, you can enable students to develop skills by completing targeted tasks
individually or in pairs. Support them by directing them to available resources and helping
them to develop general coding strategies

Teacher-facing curriculum — Unit Overview
High-level planning should start by looking at the unit overview page on curriculum.code.org/csd .

Pacing Calendar
The calendar on the unit overview page
shows the relative “size,” or length of
each lesson and suggests what you
might be able to get through in a week.
Larger projects are marked in purple.

If you finish the set of lessons for a
week ahead of schedule, you can
absorb the time if the previous week
went long, or start the next week early, time permitting.

39

CS Discoveries Curriculum Guide

http://curriculum.code.org/csd

Lesson Structure and Iconography

Teacher-facing Curriculum — Lesson Plans
Every lesson plan has a common structure designed to make it easy for you to find what you need. As you plan for a
lesson, we recommend starting with the overview, then reviewing the core activity to get a deeper sense of what will
happen in the lesson and how long it might take.

Lesson Length
Lessons in CS Discoveries are written for a wide variety of classrooms. We generally try to make one lesson equal to one
45 to 60 minute class period. However, some lessons take multiple days, such as projects or concepts that do not easily
break down into separate lesson plans. Many lessons include time estimates, but these may vary based on the age of
your students, their background with the material, or their interests.

40

CS Discoveries Curriculum Guide

Lesson Plan Iconography

Within lesson plans, you’ll notice a number of icons and other kinds of callouts, which are intended to give context about
what “mode” you should be operating in for each part of the lesson. Sometimes you speak directly to the students, and
other times you need to understand the goal of a discussion or give guidance during an activity.

Interactive Code Studio View
(inside lesson plans)

Lesson plans give you an interactive view
into all of the text content and instructions
that students see on the platform.

With this view, you can quickly browse
through what students see for each level
in the lesson without having to step
through each level in Code Studio.

This should greatly speed up your
preparations for class or serve as a quick
way to remind yourself what’s in each
lesson.

41

CS Discoveries Curriculum Guide

Code Studio - Lesson Iconography
Once students navigate to lesson levels on Code Studio, a new set of iconography is used to communicate about some
types of levels. Those icons are listed below, along with a brief description of what they represent and how you might use
them as a teacher.

42

CS Discoveries Curriculum Guide

Project Levels

These programming levels share code with one another but have different instructions.
Project levels allow students to build up projects across a lesson or unit. An alert box
informs students when they are working in a project level.

Make sure students understand that these levels share code across them, so any work
they do in one level will affect all of the related levels. If you want to see student progress
over time, you can ask them to “remix” their code at certain points and share it with you
as a standalone project.

Prediction Levels

These levels ask students to make a multiple choice or free-response prediction about the
output of a program. Students are prevented from running code (indicated by a
grayed-out “Run” button) until they lock in a prediction. Teachers can view student
predictions from the Teacher Panel.

These levels can be done as a whole group or in pairs. Give students a chance to explore
and discuss working code before hitting the “Run” button. Make sure students don’t feel
pressure to be ‘correct,’ and use predictions as a starting point for discussions of how the
code works

Lesson Extras

These are extra activities found at the end of the lesson. Students can find challenge
tasks or Free Play levels that allow them to use what they have learned in an open ended
project.

You can assign particular tasks to some students, or allow them to pick and choose what
they would like to do on their own. Free Play levels provide a scoped toolbox, but without
any particular instructions or starter code. You can use these for classroom
demonstrations or to assign your own programming task to students.

Tabs in the Instruction
panel on programming

levels

For programming lessons, the instruction panel at the top of the environment also
includes sections with important information: Instructions, Help & Tips, and Key Concept,
as well as Feedback, should you choose to provide it for your students.

Instructions: a description of the task that students are trying to accomplish in the level.

Help and tips: links to any map levels and videos that are relevant to the task.

Feedback : Teachers can see the feedback tab on any programming level, when looking
at a student’s work. Students see it once the teacher leaves feedback.

Key Concepts: Programming levels that have been identified as assessment
opportunities (as indicated by the check icon) include a key concepts tab, which outlines
the programming concept that students should be demonstrating in that level. These
levels provide space for you to evaluate students via a mini-rubric and leave written
feedback on their work.

Assessment and Feedback
Frequent assessment and feedback are critical to ensuring that students are actively involved in their own learning and
that teachers have evidence that their class is making progress. We have incorporated opportunities for both formal and
informal evaluation throughout the CS Discoveries curriculum to support you in measuring student growth and informing
the pace of your instruction. However, since schools have diverse grading systems, it is up to you to decide how to use
the assessment resources for grading purposes.

Each unit includes a learning framework document that outlines the expected student outcomes assessed throughout the
unit and within that unit’s major projects and post-project test. These outcomes are organized into concept clusters to help
students and teachers understand the broad goals of each unit, and, when taken together, address the Big Questions
included in the unit’s description. Learning objectives and assessment opportunities listed in individual lesson plans
connect back to the unit’s overall framework.

Specific student outcomes within these learning frameworks may be mapped to external standards such as the CSTA
K-12 Computer Science Standards or other similar state-level standards for computer science.

To allow students and teachers flexibility in reaching these learning goals, the course does not assess completion of
specific activities.

Opportunities for assessment and feedback
We believe that teachers in classrooms are in the best position to assess and give feedback on student performance. In
most cases, we expect that teachers evaluate student work using the criteria and rubrics provided in the lesson plans.

Lesson-level Assessment
Opportunities for assessment within each lesson are listed out in
the lesson plans themselves. These opportunities may include
sections of the activity guides, discussion and reflection
questions, or online programming and quick check levels.
Guidance for how to use these opportunities to assess student
progress is included in each lesson plan.

Teachers have access to student activity throughout the lesson, including input on prediction levels, the code for all
programming levels, and reflective activities students may engage in. While teachers might choose to assess and give
feedback on student performance in any of these situations, some places have specifically been marked as useful for
assessing student progress. Focusing on these areas can free teachers from feeling the need to look at every level a
student has completed.

Class discussions provide an opportunity for group sensemaking and for teachers to informally assess student
understanding. These discussions may begin with students writing down their individual thoughts before sharing with a
partner or group. The goals of each discussion and how teachers might use them to evaluate learning are included in the
lesson plan as callout instructions.

Journal questions allow students to reflect on what they have learned, and what they hope to learn more about. Journal
prompts often accompany discussion questions, and guidance for assessment is also included in the lesson plan.

Quick-check levels include multiple choice or short answer questions. These are usually given after students have had a
chance to explore a concept. They check for common misunderstandings before students move on to the next lesson or

43

CS Discoveries Curriculum Guide

task. Students are able to get feedback from the system immediately, and revise their answers before moving on to the
next task. Each quick-check level includes teacher notes detailing the learning objective being assessed.

Programming levels challenge students to complete a small programming task.
Teachers have access to all student work in these levels, can read and run the code
that students have produced, and can leave feedback for students about their work.
These levels also include exemplar solutions for teachers to reference and a
mini-rubric that provides assessment criteria and the learning objective being
assessed.

Activity Guides accompany unplugged lessons in the curriculum. They include
prompts and questions that teachers can use to follow students’ progress through the lesson and reflection questions that
can give insight into what students have learned from the activity. Guidance for assessment is included in the lesson plan
and any related exemplars.

Chapter- and Unit-level Assessment
End of chapter projects incorporate the skills and understandings students have developed while progressing through
that chapter’s lessons. These projects are designed to assess unit-specific skills and the five student practices that thread
through the entire course. There is broad guidance for the activity, but project implementation leaves room for students to
put their personal stamp on the creation.

Student-facing rubrics give guidance on the skills they must demonstrate, while allowing for plenty of choice in how to
show what they have learned. These rubrics are directly related to the expected student outcomes listed in the learning
framework and give criteria for evaluation of the various objectives of the unit.

Teacher-facing sample projects and associated marked rubrics provide guidance
in how student work can be assessed. The sample projects demonstrate varied
levels of mastery of the different skills assessed by the project, to allow teachers to
compare their own student work to the marked exemplars.

Practice reflections are more open ended, with space for students and teachers
to reflect on how the five student practices played into the student experience with the project. We’ve intentionally made
these reflections the same throughout all projects in the course, so that students and teachers can track progress over
time.

Post-project tests are included at the end of every unit. These include several multiple choice and matching questions as
well as open ended reflections on the final project of the unit. These tests are aligned to the learning framework of each
unit and are designed to assess parts of the framework that may not have been covered by the project rubrics.

Individual assessment of group activities
Many CS Discoveries activities are designed to be completed in pairs or small groups. While group work is essential to
help students develop the collaborative skills that are a key focus of the course, teachers may find it difficult to assess
each individual student’s learning. Consider using reflection questions that dig into both the student’s role in the project
and in the student’s understandings and skills for more insight into individual learning outcomes.

44

CS Discoveries Curriculum Guide

Planning for the Year
Pacing
CS Discoveries is designed to be taught as a single semester, two semesters over multiple years, or as one full year
course. The following pacing guide gives a rough recommendation of unit length, assuming that your class meets five
days a week for at least 45 minutes per session. Check out Appendix B for alternative implementation options.

Tech Requirements and Required Materials
Technical Requirements
The course requires and assumes a 1:1 computer lab or setup such that each student has access to an
internet-connected computer every day in class. Each computer must have a modern web browser installed. All of the
course tools and resources (lesson plans, teacher dashboard, videos, student tools, programming environment, etc.) are
online and accessible through a web browser. For more information about tech setup go to: code.org/educate/it

While the course features many “unplugged” activities away from the computer, daily access to a computer is essential for
every student. However, it is not required that students have access to internet-connected computers at home. Since
almost all of the materials are online, internet access at home is certainly an advantage. PDFs of handouts, worksheets
and readings are available on the course website.

Required Materials / Supplies
One potentially significant cost to consider when teaching this course is printing. Many lessons have handouts that are
designed to guide students through activities. While it is not required that all of these handouts be printed, many were
designed to be printed and we highly recommend printing when possible.

Beyond printing, some lessons call for typical classroom supplies and manipulatives such as: Student journals, poster
paper, markers/colored pencils, scissors, scrap paper, glue or tape, post-it notes (or similar sized scrap paper), rulers or a
straight edge of some kind, index cards (or similar sized scrap paper)

In addition to those general course materials, the following items are called for in specific units:
● Unit 1 - Problem Solving and Computing

○ Aluminum foil, container for water, pennies (note that pennies can be replaced with some other kind of
weight of the same size.) - Alternate activities are available if you do not have access to these supplies.

● Unit 6 - Physical Computing
○ Classroom set of Circuit Playgrounds (1 board and micro USB cable for every 2 students). Check out

code.org/circuitplayground for more details.

45

CS Discoveries Curriculum Guide

Semester 1

Unit 1: Problem Solving Computing
3 weeks

Unit 2: Web Development
7 weeks

Unit 3: Animations & Games
9 weeks

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
3 weeks

Chapter 1
5 weeks

Chapter 2
4 weeks

Semester 2

Unit 4: The Design Process
6 weeks

Unit 5: Data & Society
5 weeks

Unit 6: Physical Computing
6 weeks

Chapter 1
2 weeks

Chapter 2
4 weeks

Chapter 1
2 weeks

Chapter 2
3 weeks

Chapter 1
3 weeks

Chapter 2
3 weeks

http://code.org/educate/it
http://code.org/circuitplayground

Appendix A: Professional
Learning Handouts

NOTE: This appendix was created to support teachers who are participating in the Code.org Professional Learning
Program.

46

CS Discoveries Curriculum Guide

Build your Action Plan: Getting to Fall
Use the space below to make a plan for preparation you want to complete between now and the start of the school year.

47

CS Discoveries Curriculum Guide

Your open questions

What questions do you have?
Where can you find answers to those

questions?
When do you plan to get answers to

those questions?

Things to explore further

Which topics in the curriculum do you
want to further explore before you

start teaching the course?

Who can you work with in exploring
these topics?

When do you plan to do this
exploration?

Pacing and Planning: Instructional Units
Use the space below to document your pacing plan for moving through each of the instructional units and performance
tasks.

48

CS Discoveries Curriculum Guide

What Duration When do you
plan to start?

When do you
plan to finish?

Notes or special considerations

Unit 1
Problem

Solving and
Computing

3 weeks

Unit 2
Web

Development
7 weeks

Unit 3
Interactive
Animations
and Games

9 weeks

Unit 4
The Design

Process
6 weeks

Unit 5
Data and
Society

5 weeks

Unit 6
Physical

Computing
6 weeks

Appendix B: CS Discoveries
Getting Started and

Implementation Options

NOTE: The following two documents (Getting Started and Intended Implementation Options) were created to support
teachers who are not participating in the Code.org Professional Learning Program but are shared here because they are
generally useful documents for any CS Discoveries teacher.

49

CS Discoveries Curriculum Guide

Basic Course Information
Computer Science Discoveries is an introductory, classroom-based course
appropriate for 6 - 10th grade students. It is designed with the new-to-CS
student and teacher in mind and can be taught as a semester or year-long
course (3-5 hours per week of instruction for 9+ weeks).

The course takes a wide lens on computer science by covering topics such
as programming, physical computing, web development, design, and data.
The course inspires students as they build their own websites, apps, games,
and physical computing devices. Our curriculum is available at no cost for
anyone, anywhere in the world.

Options for Implementation
CS Discoveries consists of two semesters that build on each other. Schools can choose to teach a single semester, two
sequential semesters, or a single, year-long course. For schools with less than a semester, we always suggest starting
with the Problem Solving and Computing unit. Afterward, the class can move on to Web Development or Interactive
Animations and Games. The second chapter of each unit can be skipped if pressed for time. Read more about our
implementation options in the section below.

What You’ll Need
The course requires that students have access to computers with a modern web browser. At this time, our courses are not
optimized for tablets or mobile devices. For more details, check out Code.org's technology requirements at
code.org/educate/it .

In addition to computer access, you'll need typical classroom supplies, such as pencils, paper, scissors and glue, as well
as an ability to print lesson handouts for students. A few activities may require some specific supplies such as a deck of
cards or aluminum foil. You can see a full list of resources needed for each lesson at
https://curriculum.code.org/csd/resources/ .

Adafruit's Circuit Playground Boards and Micro USB cables are required for our physical
computing unit. The curriculum is designed for a ratio of 2 students to 1 board & 1 usb cable. For
more details, check out our Circuit Playground page at code.org/circuitplayground.

Learning More
For more in-depth information about the CS Discoveries curriculum, go to http://curriculum.code.org/csd/ . This site
includes unit overviews, detailed lesson plans, student handouts, standards alignment, and links to resources such as
online code documentation. It also includes the CS Discoveries Curriculum Guide, which guides teachers though
everything they need to know about the course, from our course content and pedagogical approach to specific instructions
for using Code.org tools.

50

CS Discoveries Curriculum Guide

Getting Started

http://code.org/educate/it
https://curriculum.code.org/csd/resources/
https://code.org/circuitplayground
http://curriculum.code.org/csd

Getting Started
To get started with the curriculum, you’ll need to create and verify a teacher account. Go to
https://studio.code.org/users/sign_up to set up your Code.org teacher account. This will give you access to lesson plans,
activity guides, and all online activities that your students will see. To access answer keys and other restricted materials,
go to https://code.org/verified . The verification process may take up to seven business days.

Running a Code.org Lesson
CS Discoveries is written with the new-to-CS teacher in mind, meaning that you do not
need to be an expert in computer science to run the lesson. Teachers do, however, play
an active role as the lead learner in the course, establishing a collaborative and safe
learning culture, facilitating sensemaking discussions, and helping students to overcome
challenges in the activities through modelling effective learning strategies.

Each lesson plan includes teaching tips, discussion goals, and extra information on
content to help you fulfill your role in the classroom. The most valuable preparation for a
new-to-CS teacher, though, may be going through the course activities yourself to better
understand and empathize with the challenges your students face when engaging with
the new material.

To avoid technical problems, make sure that you can play the course videos and access published Web Lab , Game Lab ,
and App Lab projects on student devices. You may need to check with your IT department to allow these sites though
your school’s firewall. For a full list of websites to unblock, visit the Code.org IT Requirements at code.org/educate/it .

Where to go for help
The Code.org forum is an active online community where teachers can ask questions, find resources, and collaborate.
Verified teachers have access to teacher-only boards where they can discuss answers and share restricted resources.
The forum is a great place to find supplementary materials that teachers have created to suit their particular classrooms.
https://forum.code.org

To read help articles or get support directly from Code.org staff, go to support.code.org . You can search for answers to
frequently asked questions, report bugs, and give other feedback on the curriculum and tools.

Every 21st century student should have the opportunity to learn
computer science. The basics of computer science help nurture
creativity and problem-solving skills, preparing students for a
future in any field or career.

51

CS Discoveries Curriculum Guide

https://studio.code.org/users/sign_up
https://code.org/verified
https://code.org/educate/weblab
https://code.org/educate/gamelab
https://code.org/educate/applab
http://code.org/educate/it
https://forum.code.org/
http://support.code.org/

CS Discoveries is designed to be taught as a single semester or full-year course. The following pacing guide gives a
rough recommendation for unit length, assuming the class meets five days a week for at least 45 minutes per session.

If teaching the course as a semester or full year, we recommend teaching the units in the order they appear in the
curriculum, which is also presented below. Some schools may choose to split the course over multiple years, in which
case students should complete the first semester before the second.

5-Weeks: Web Development

8-Weeks: Interactive Animations

10-Weeks: Web Development

12-Weeks: Condensed Semester

52

CS Discoveries Curriculum Guide

Intended Implementation Options

Semester 1

Problem Solving & Computing
3 weeks

Web Development
7 weeks

Interactive Animations & Games
9 weeks

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
3 weeks

Chapter 1
5 weeks

Chapter 2
4 weeks

Semester 2

The Design Process
6 weeks

Data & Society
5 weeks

Physical Computing
6 weeks

Chapter 1
2 weeks

Chapter 2
4 weeks

Chapter 1
2 weeks

Chapter 2
3 weeks

Chapter 1
3 weeks

Chapter 2
3 weeks

Guidelines for Further Adjustments

● Always start with the Problem Solving and Computing unit, which introduces core frameworks and
classroom norms.

● Afterward, the class can move to Web Development or Interactive Animations and Games.
● The second chapter can be skipped if pressed for time.

A few sample pacing guides that follow these guidelines are provided below, but you may choose to create your own.

Problem Solving
& Computing Web Development

Chapter 1
1 week

Chapter 1
4 weeks

Problem Solving & Computing Interactive Animations and Games

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
5 weeks

Problem Solving & Computing Web Development

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
3 weeks

Problem Solving & Computing Web Development Interactive Animations & Games

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 1
5 weeks

Appendix C: Additional Guides
and Resources

53

CS Discoveries Curriculum Guide

Guide to Debugging

54

CS Discoveries Curriculum Guide

Guide to Debugging - Student Facing

Introduction to Debugging
Debugging is the process of finding and fixing problems in code. For most
programs, the time spent debugging far outweighs the time spent writing new
code. Whether students or professional engineers, all programmers get bugs,
and debugging is a normal part of the programming process.

Although students may see bugs as inconveniences to be eliminated as soon
as possible, bugs in student programs should be seen as opportunities to
reinforce positive attitudes toward debugging and persistence, identify and
address student misconceptions, and further develop good debugging skills.
Your role as the teacher is to avoid directly debugging for your students, but
to guide students in better taking advantage of these opportunities.

Reinforcing positive attitudes
Finding bugs is the first step toward fixing them. Programmers deliberately test their code in order to uncover any possible
bugs. Celebrate the discovery of new bugs as students report them in the classroom, framing finding a bug as the first
step to fixing it. Model enjoying the interesting or funny behaviors a bug can cause, such as making a sprite move in
unexpected ways, or distorting an image on a web page. Remind students that if programs all worked exactly as they
wanted the first time, programming wouldn’t be as interesting or fun. Encourage students as they get frustrated,
reinforcing the debugging strategies and students’ self-efficacy as they improve their debugging skills, and talk about the
bugs that you get in your own programs, reminding them that everyone gets bugs, even professional software developers.

Identify and address misconceptions
Often a bug occurs because students have misconceptions around how the computer interprets their code. As part of the
debugging process, have students explain their code, line by line, reminding them that the program is really only doing
exactly as it was told. If the program displays an error message, ask the student to connect the message to what is
happening in the code itself. Prompt them with relevant questions about how the associated programming structures
(such as conditionals or loops) work, and refer them back to previous lessons, worked examples, or documentation when
needed. After students have found the bug, ask them to reflect on what they learned about the associated programming
structures and how they could explain it to a friend with a similar bug.

Develop debugging skills
As students get more experience debugging their programs, they will build the skills they need to debug more
independently. Help students to generalize the strategies that they use by asking them to reflect on what processes were
effective and reframing those processes as a general strategy. They should also learn ways to simplify the debugging
process by making their code more readable with good naming conventions, clear formatting, and relevant comments;
organizing code into functions or other logical chunks where appropriate; and testing small pieces of code as they go. Call
out these practices as facilitating debugging as you help students with their code.

55

CS Discoveries Curriculum Guide

Guide to Debugging - Teacher Facing

Debugging as problem solving
In computer science, debugging is framed as a form of problem solving, and students can use a version of the four step
Problem Solving Process as a framework for debugging their programs. Just as in other forms of problem solving, many
students may jump to the “Try” part of the framework and begin making changes to their code before understanding the
nature of the bug itself. Remind them that all parts of the process are important, and that ignoring the other three steps will
actually make debugging more time consuming and difficult in the long run.

Define - Describe the bug
In the context of debugging, defining the problem is describing the bug. This step can be done by anyone using the
program, not just the person who will eventually be debugging it. Students will need to know the following information
before they move on to the next step:

● When does it happen?
● What did you expect the program to do?
● What did it do instead?
● Are there any error messages?

Some bugs will keep the code from running at all, while others will run, but not
correctly, or will run for a while, then stop or suddenly do something unexpected.
All of those things are clues that will help the student find the bug in the next step.

You can encourage students to clearly describe the bugs they find by having them
write up bug reports, such as in this worksheet . As you foster a positive culture
around debugging, encourage students to write bug reports for their classmates’
code as well as their own.

Prepare - Hunt for the bug
In most cases, hunting for the bug (the “prepare” step in the debugging process) will take up most of a programmer’s time.
Remind students that it’s natural to take a long time to find a bug, but that there are things that will make their search
easier.

1. Why is the bug happening?
Often students focus on what they want the program to do and why they believe their code is correct, rather than
investigating what could be causing the bug. Encourage students to start with the error messages and what is
actually happening when the program is run, and try to connect that with the code that they have written, rather
than explain why their code “should” be working. They can also “trace” their code, by reading it line by line, not
necessarily from top to bottom, but in the order that the computer would interpret it while the program is running.
Using debugging tools such as watchers, breakpoints, or the inspector tool may help them to identify why the
code is running as it is.

2. What changed right before the bug appeared?
If students have been testing their code along the way (as they should!), they can focus on code that they have
recently changed. As they investigate that code, they should follow the logic of their program in the same order
that the code runs, rather than reading the code line by line from top to bottom.

3. How does this code compare to “correct” solutions?
Students should also make use of the various resources available to them, such as working projects, examples in
previous lessons, and code documentation. Have them compare the patterns that they find in the documentation
and exemplars to their own code, differentiating between the programming patterns that should be the same
(loops, counter pattern, HTML syntax) and specifics of their program that will be different (variable names, image
URLs, coordinates).

56

CS Discoveries Curriculum Guide

https://docs.google.com/document/d/1M6mnq73DfyvzasucVAwfL-gjl2JqVPzjy_fRx5j4j7c/

Try - Change the code
If students believe that they have found the bug, they can go ahead and try to fix it, but in many cases they may want to
make changes to the code to narrow down their search. Some common strategies include:

1. Commenting out code
By commenting out sections of the program, students can narrow down the part of the program that is causing the
bug. After commenting out large sections of code, function calls, or html elements, test whether the bug is
eliminated. This method is especially helpful when students have used good modular programming techniques.

2. Print to the console
Using the console log command can help students to understand whether a conditional has been triggered, or
keep track of a quickly changing variable over a period of time.

3. Change the starting values of variables
Changing the starting values of variables can make it easier to reproduce a certain bug. For example, students
may want to change the starting score to 99 to test a bug that only occurs when the score reaches 100. They may
want to set their number of lives to a very high number to allow them to test for longer before losing the game.

4. Amplify small effects
Sometimes bugs have such tiny effects that it’s difficult to investigate them. Amplifying small effects, such as
making elements move further on the screen or giving web page elements a background color to make them
more visible, can make it easier to understand what is happening in a program.

In many cases, students will introduce new bugs during the debugging process, especially if they are randomly changing
code as part of a “guess and check” method. Prompt them to explain why they are changing the code, and encourage
them to make small changes and test them often, making it easier to go back if their solution didn’t work.

Reflect - Document what happened
As students make changes and see the effects, they should reflect and document on their experiences. This will help
them to build a better model of how the program constructs work and what debugging strategies are most effective.
Students should consider the following after they have eliminated a bug from their program:

1. What caused the bug?
The computer had a reason for doing what it did, and students should understand why their code caused the bug
itself. There may be a rule that they can share with others in the class (“There is no closing tag for images”) or a
misconception (“Sprites all get drawn to the screen when ̀drawSprites` is called, not when they are updated.”)
that they can clear up.

2. How did you find the bug?
Have students describe the debugging process that they used, paying special attention to how the type of bug
and any error messages lent themselves to particular debugging strategies. Help them to generalize their
strategies so that they can use them in a variety of situations (e.g. “I had to capitalize the ‘r’ in my variable” might
become “You double checked the capitalization and spelling of the variable the program didn’t recognize.”).

3. What in your code made it easier or harder to debug?
Debugging is a great time to reinforce “clean code” practices, such as good naming conventions, use of functions
or other ways of “chunking” code into logical sections, commenting, and clear formatting. Point out when
comments or well named functions and variables make it easier to trace code and find an error. Debugging is also
easier when students have separated out code into logical chunks and functions, which can be commented out
individually.

Writing debuggable code
Various practices will make it easier for students to debug their code. Encourage students to neatly format their code, as
well as make good use of comments and whitespace. Organizing code into logical chunks, using functions, and having
reasonable names for classes, variables, and functions will help them to read and interpret their code as they debug.
Point out times when students’ good programming practices have made it easier for them to debug their own code.

57

CS Discoveries Curriculum Guide

CS Discoveries Approach to Differentiation
In order to meet the needs of a wide variety of learners, CS Discoveries is
designed with a flexibility that allows teachers to differentiate their
instruction at the class and student level. Students are expected to take an
active part in driving these learning experiences, seeking out appropriate
levels of challenge and support with the guidance of a teacher. The course
includes multiple features that provide opportunities for students to make
choices around how they reach the common learning objectives of the
course, while ensuring that the class stays together and maintains a sense
of community.

Student Level Differentiation
CS Discoveries lessons and projects are designed to meet these various needs of students within a classroom cohort
while keeping them moving at the same pace throughout the course. Within each lesson and project, there are multiple
places for students to engage in more practice, get extra support, and challenge themselves with further material.

Practice Levels
Practice levels are found in many programming lessons, after students have
been introduced to the target skills, but before the assessment level. Practice
levels provide multiple ways to engage with the lesson content, including
debugging activities and modifying existing code.

With the guidance of a teacher, students may choose to complete all the
practice options, or just as many as they need to be ready for the
assessment. None of the practice options introduce new skills or concepts,
so students who skip ahead to the assessment level will not have missed any
key material. Previews and short descriptions help students to find an activity
that appeals to them.

Challenge Levels
Challenge levels are found after the assessment levels in most programming lessons. These levels include new code and
challenges that go beyond the learning objectives of the lesson. Most also include a “Free Play” option that allows
students to use the new skills they have learned in whatever way they choose.

Although these levels include new content, students will be able to move on to later lessons without needing anything
introduced here, and none of it is necessary to achieve the goals of the course. These levels provide students who have
already mastered the lesson content new challenges and extension code, giving them more options to express
themselves creatively in the programming environment. As those students take on these more difficult activities, teachers
can provide targeted support to students who are still working toward mastery of the lesson objectives.

58

CS Discoveries Curriculum Guide

Guide to Differentiation - Teacher Facing

Projects
Open-ended projects are found throughout the programming units, with a major project at the end of each chapter. While
each project includes a rubric that assesses key learning objectives, students may choose the content of their projects,
and teachers may choose to add or alter requirements for a class or individual students. These requirements could
include extra challenges for those who should go further, or they could provide scaffolding for students who need more
guidance.

Within each project lesson, students will be asked to plan out their project before starting to code. Teachers may want to
look over these plans and ensure that students are choosing a level of difficulty that is appropriate for them. As students
iterate on their projects, teachers may want to provide extra challenges or help them to modify their plans to make them
more manageable.

Resources
Learning to use resources is a key goal of the course, and given resources provide an
opportunity for students to self-differentiate in how they interact with key course
content. Programming levels include a “Help and Tips” tab that includes concept
explanations, code documentation, and videos to support students in completing their
activities.

As students engage in the programming activities, encourage them to find ways of
using the resources that work for them. For example, some students may prefer to
look over the documentation before beginning the activities, while others may choose
to use it only as a reference when needed.

Class Level Differentiation
CS Discoveries also provide opportunities to tailor the course to meet the needs of the class as a whole.

Implementation Options
Although the course comes with a standard pacing guide, class schedules and student needs will make modifications
necessary for most classrooms. Teachers should feel free to spend more time where students need it, even if it means
skipping other parts of the course. In particular, the first chapter of every unit ends in a project that will wrap the content
up nicely if there is not time for a second chapter.

Alternate Lessons
The first chapter of the first unit, The Problem Solving Process, includes several alternate lessons that cover the same
core material with different activities. Teachers may choose a lesson that will work best for their classroom. Multiple
options also make it easy to run this introductory unit multiple times, for classrooms in which the course is taught in a
modular way, and later modules may include both returning and new students.

Further Support

CS Discoveries Teacher Forum (https://forum.code.org/c/csd) is a great place to find advice from other teachers, as
well as teacher-created resources to support differentiation. You can also share your own experiences for the benefit of
others.

Lesson Plans (http://curriculum.code.org/csd) include teaching tips that give guidance on how to differentiate for a
class or individual students. They also include a preview of each of the practice and challenge levels, as well as alternate
lessons.

Support Articles (http://support.code.org/) give detailed information on how to use the various features of the course.

59

CS Discoveries Curriculum Guide

https://forum.code.org/c/csd
http://curriculum.code.org/csd
http://support.code.org/

60

CS Discoveries Curriculum Guide

Guide to Resources - Student Facing

Introduction to Using Resources
Using resources is a core, authentic practice of computer science.
Whether novice or expert, all programmers rely on code documentation
and other resources when writing programs. In order to build their
programming skills, students will need to effectively leverage the resources
that they have available to them.

Although students may see their need for resources as a barrier to
overcome, the use of resources should be presented as an opportunity to
foster a growth mindset and build important skills in using resources.
When students have questions, the teacher’s role is to help them develop
the ability to find out the answers, rather than to directly solve their
problems. In modelling and scaffolding the use of resources in the
classroom, the teacher demonstrates lifelong learning skills that students can use beyond their current tasks.

Resources in CS Discoveries
CS Discoveries includes several key resources to support students in the learning process. Video, code documentation,
and the help and tips tab are all available to students as they engage in their programming activities. For the most part,
these resources are set up to be used as needed, not read as a pre-reading or presented as a lecture. Students are not
expected to already know all the needed information when they engage in programming activities. This structure reflects
the “discovery” model of the course, but also supports students in the authentic use of resources and code
documentation.

Promoting Growth Mindset
It is not reasonable to expect anyone, even an expert, to know everything about a programming language. As
programming languages are updated and new languages are introduced, it’s important that programmers have the
willingness and ability to learn new skills. As resources are used in the classroom, explicitly mention using them as an
expert practice, and frame the use of resources as a positive problem-solving strategy. Celebrate when students are able
to use resources effectively, even when they feel they should “already know how” to solve the problem themselves. Be
open and explicit about using resources when you are unsure or would like clarification of a concept.

Scaffolding the use of resources
Within Code Studio, the use of resources has been scaffolded to help students better
access the information that they need. In Web Development, the instructions pane
includes several questions that assist students in defining the type of information that
they should use resources to access, as well as direct answers to those questions. In
all programming units, students have access to a Help and Tips tab, which includes the
resources relevant to their current activity.

To support students in using these resources, teachers can introduce a specific
framework based on the problem solving process that students use throughout the
course. As students have questions, refer them to the framework for using resources
and help them to understand what part of the process they are in, and how they can
progress. Avoid directly giving them the information, especially before they’ve engaged
in the activity, but support them in understanding where they can find answers and how
they can frame their own search.

61

CS Discoveries Curriculum Guide

Guide to Resources - Teacher Facing

Using resources as problem solving
In computer science, using resources is a key part of problem solving, and students can use a version of the four step
Problem Solving Process as a framework for using resources. Just as in other forms of problem solving, many students
may jump to the “Try” part of the framework and begin looking through documentation before really understanding what
they are looking for. Remind them that all parts of the process are important, and that ignoring the other three steps will
actually take more time in the long run.

Define - Describe what you need to know
Before looking for information, students should first know what they are looking for. Most likely, they are stuck in a
programming problem, but they may not understand exactly what sort of information might help them. Students can use
the following questions as prompts:

● What do I need to know?
● What is the problem I am trying to solve?
● What does success look like?

In some cases, the answer to this step might be very specific (“I need to know how to make my text green.”), but in other
cases it might be more general or hard to define. Encourage students to have a question that they want answered before
moving to the next step. You may need to support them in articulating their question or understanding what makes a
question specific enough to be useful.

Prepare - Decide where to look for the information
Some questions, such as those around how a particular Game Lab block or HTML tag is used, will easily lead to a
particular piece of documentation. Others, such as more general questions on how to accomplish a particular task, might
not be as obvious. Students can use the following questions to help them decide where they can look for help:

● Where can I find answers to this sort of problem (code documentation, help and tips pages)?
● What has helped me solve similar problems in the past?
● What resources are available for this programming environment?

Try - Read the resources
As students read over the resources, they should compare them to the question that they came up with, and try to relate
the information that they are reading to their own problem. They should be actively searching for answers, rather than
reading for general comprehension.

As students are reading the resource, they should also be working to use what they have learned. This means that they
may read a bit, change their code and test it, then repeat the process depending on the results of their code.

Reflect - Think about what worked
After using the resources, students should think about what was helpful and what was not. Some questions they may ask
include:

● Did that answer the question?
● Did the question I asked and information I looked for help me solve my problem?
● What works well for me? Videos? Examples? Step by step instructions?
● What will I do if I have a similar question in the future?

Encourage students to think about how their skills at using resources are improving over time. Do they know what
information they should look for? Do they know where to find it? Do they know how to use it?

62

CS Discoveries Curriculum Guide

